The Reliability of 4-Minute and 20-Minute Time Trials and Their Relationships to Functional Threshold Power in Trained Cyclists

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: The mean power output (MPO) from a 60-min time trial (TT)—also known as functional threshold power, or FTP—is a standard measure of cycling performance; however, shorter performance tests are desirable to reduce the burden of performance testing. The authors sought to determine the reliability of 4- and 20-min TTs and the extent to which these short TTs were associated with 60-min MPO. Methods: Trained male cyclists (n = 8; age = 25 [5] y; V˙O2max = 71 [5] mL/kg/min) performed two 4-min TTs, two 20-min TTs, and one 60-min TT. Critical power (CP) was estimated from 4- and 20-min TTs. The typical error of the mean (TEM) and intraclass correlation coefficient (ICC) were calculated to assess reliability, and R2 values were calculated to assess relationships with 60-min MPO. Results: Pairs of 4-min TTs (mean: 417 [SD: 45] W vs 412 [49] W, P = .25; TEM = 8.1 W; ICC = .98), 20-min TTs (342 [36] W vs 344 [33] W, P = .41; TEM = 4.6 W; ICC = .99), and CP estimates (323 [35] W vs 328 [32] W, P = .25; TEM = 6.5; ICC = .98) were reliable. The 4-min MPO (R2 = .95), 20-min MPO (R2 = .92), estimated CP (R2 = .82), and combination of the 4- and 20-min MPO (adjusted R2 = .98) were strongly associated with the 60-min MPO (309 [26] W). Conclusion: The 4- and 20-min TTs appear useful for assessing performance in trained, if not elite, cyclists.

MacInnis is with the University of Calgary, Calgary, AB, Canada. Thomas and Phillips are with the Dept of Kinesiology, McMaster University, Hamilton, ON, Canada.

MacInnis (Martin.MacInnis@ucalgary.ca) is corresponding author.
  • 1.

    Currell K, Jeukendrup AE. Validity, reliability and sensitivity of measures of sporting performance. Sports Med. 2008;38(4):297–316. PubMed ID: 18348590 doi:10.2165/00007256-200838040-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hopkins WG, Schabort EJ, Hawley JA. Reliability of power in physical performance tests. Sports Med. 2001;31(3):211–234. PubMed ID: 11286357 doi:10.2165/00007256-200131030-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93–107. PubMed ID: 1997818 doi:10.1249/00005768-199101000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bishop D. Reliability of a 1-h endurance performance test in trained female cyclists. Med Sci Sports Exerc. 1997;29(4):554–559. PubMed ID: 9107640 doi:10.1097/00005768-199704000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    el-Sayed MS, Balmer J, Rattu AJ. Carbohydrate ingestion improves endurance performance during a 1 h simulated cycling time trial. J Sports Sci. 1997;15(2):223–230. PubMed ID: 9258853 doi:10.1080/026404197367506

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Backx K, van Someren KA, Palmer GS. One hour cycling performance is not affected by ingested fluid volume. Int J Sports Nutr Exerc Metab. 2003;13(3):333–342. doi:10.1123/ijsnem.13.3.333

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Allen H, Coggan A. Training and Racing with a Power Meter. Boulder, CO: Velopress; 2006.

  • 8.

    Driller MW, Argus CK, Bartram JC, et al. Reliability of a 2-bout exercise test on a wattbike cycle ergometer. Int J Sports Physiol Perform. 2014;9(2):340–345. PubMed ID: 23920473 doi:10.1123/ijspp.2013-0103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Moritani T, Nagata A, Devries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–350. PubMed ID: 7262059 doi:10.1080/00140138108924856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc. 2016;48(11):2320–2334. PubMed ID: 27031742 doi:10.1249/MSS.0000000000000939

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Housh DJ, Housh TJ, Bauge SM. The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics. 1989;32(8):997–1004. PubMed ID: 2806229 doi:10.1080/00140138908966860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Critical power testing or self-selected cycling: which one is the best predictor of maximal metabolic steady-state? J Sci Med Sport. 2017;20(8):795–799. PubMed ID: 28302463 doi:10.1016/j.jsams.2016.11.023

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bishop D, Jenkins DG, Howard A. The critical power function is dependent on the duration of the predictive exercise tests chosen. Int J Sports Med. 1998;19(2):125–129. PubMed ID: 9562222 doi:10.1055/s-2007-971894

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265–1279. PubMed ID: 3191904 doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mattioni Maturana F, Keir DA, McLay KM, Murias JM. Can measures of critical power precisely estimate the maximal metabolic steady-state? Appl Physiol Nutr Metab. 2016;41(11):1197–1203. PubMed ID: 27819154 doi:10.1139/apnm-2016-0248

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Morton RH. The critical power and related whole-body bioenergetic models. Eur J Appl Physiol. 2006;96(4):339–354. PubMed ID: 16284785 doi:10.1007/s00421-005-0088-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Thomas S, Reading J, Shephard RJ. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can J Sport Sci. 1992;17(4):338–345. PubMed ID: 1330274

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rossiter HB, Kowalchuk JM, Whipp BJ. A test to establish maximum O2 uptake despite no plateau in the O2 uptake response to ramp incremental exercise. J Appl Physiol. 2006;100(3):764–770. PubMed ID: 16282428 doi:10.1152/japplphysiol.00932.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377–381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 20.

    Jeukendrup A. A step towards personalized sports nutrition: carbohydrate intake during exercise. Sports Med. 2014;44(suppl 1):25–33. PubMed ID: 24791914 doi:10.1007/s40279-014-0148-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:36–44.

  • 22.

    Padilla S, Mujika I, Orbananos J, Angulo F. Exercise intensity during competition time trials in professional road cycling. Med Sci Sports Exerc. 2000;32(4):850–856. PubMed ID: 10776906 doi:10.1097/00005768-200004000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Sparks A, Williams E, Jones H, Bridge C, Marchant D, McNaughton L. Test-retest reliability of a 16.1 km time trial in trained cyclists using the CompuTrainer ergometer. J Sci Cycling. 2016;5(3):35–41.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sporer BC, McKenzie DC. Reproducibility of a laboratory based 20-km time trial evaluation in competitive cyclists using the Velotron Pro ergometer. Int J Sports Med. 2007;28(11):940–944. PubMed ID: 17497571 doi:10.1055/s-2007-964977

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Driller MW. The reliability of a 30-minute performance test on a Lode cycle ergometer. J Sci Cycling. 2012;1(2):21–27.

  • 26.

    Paton CD, Hopkins WG. Tests of cycling performance. Sports Med. 2001;31(7):489–496. PubMed ID: 11428686 doi:10.2165/00007256-200131070-00004

  • 27.

    de Lucas RD, de Souza KM, Costa VP, Grossl T, Guglielmo LGA. Time to exhaustion at and above critical power in trained cyclists: the relationship between heavy and severe intensity domains. Sci Sports. 2013;28(1):9–14. doi:10.1016/j.scispo.2012.04.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Gaesser GA, Wilson LA. Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. Int J Sports Med. 1988;9(6):417–421. PubMed ID: 3253231 doi:10.1055/s-2007-1025043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bishop D, Jenkins DG. The influence of recovery duration between periods of exercise on the critical power function. Eur J Appl Physiol Occup Physiol. 1995;72(1–2):115–120. PubMed ID: 8789581 doi:10.1007/BF00964125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Smith JC, Dangelmaier BS, Hill DW. Critical power is related to cycling time trial performance. Int J Sports Med. 1999;20(6):374–378. PubMed ID: 10496116 doi:10.1055/s-2007-971147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Black MI, Durant J, Jones AM, Vanhatalo A. Critical power derived from a 3-min all-out test predicts 16.1-km road time-trial performance. Eur J Sport Sci. 2014;14(3):217–223. PubMed ID: 23802599 doi:10.1080/17461391.2013.810306

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Harnish CR, Swensen TC, Pate RR. Methods for estimating the maximal lactate steady state in trained cyclists. Med Sci Sports Exerc. 2001;33(6):1052–1055. PubMed ID: 11404673 doi:10.1097/00005768-200106000-00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Baron B, Noakes TD, Dekerle J, et al. Why does exercise terminate at the maximal lactate steady state intensity? Br J Sports Med. 2008;42(10):828–833. PubMed ID: 18070803 doi:10.1136/bjsm.2007.040444

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 209 209 26
Full Text Views 29 29 12
PDF Downloads 15 15 4