Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare repetition maximum (RM) to relative intensity using sets and repetitions (RISR) resistance training on measures of training load, vertical jump, and force production in well-trained lifters. Methods: Fifteen well-trained (isometric peak force = 4403.61 [664.69] N, mean [SD]) males underwent resistance training 3 d/wk for 10 wk in either an RM group (n = 8) or RISR group (n = 7). Weeks 8 to 10 consisted of a tapering period for both groups. The RM group achieved a relative maximum each day, whereas the RISR group trained based on percentages. Testing at 5 time points included unweighted (<1 kg) and 20-kg squat jumps, countermovement jumps, and isometric midthigh pulls. Mixed-design analyses of variance and effect size using Hedge’s g were used to assess within- and between-groups alterations. Results: Moderate between-groups effect sizes were observed for all squat-jump and countermovement-jump conditions supporting the RISR group (g = 0.76–1.07). A small between-groups effect size supported RISR for allometrically scaled isometric peak force (g = 0.20). Large and moderate between-groups effect sizes supported RISR for rate of force development from 0 to 50 ms (g = 1.25) and 0 to 100 ms (g = 0.89). Weekly volume load displacement was not different between groups (P > .05); however, training strain was statistically greater in the RM group (P < .05). Conclusions: Overall, this study demonstrated that RISR training yielded greater improvements in vertical jump, rate of force development, and maximal strength compared with RM training, which may be explained partly by differences in the imposed training stress and the use of failure/nonfailure training in a well-trained population.

Carroll, Bernards, Bazyler, DeWeese, Sato, and Stone are with the Center of Excellence for Sport Science and Coach Education, Dept of Sport, Exercise, Recreation, and Kinesiology, and Stuart, the Dept of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN. Taber is with the Dept of Exercise Science, College of Health Professions, Sacred Heart University, Fairfield, CT.

Carroll (carrollk@etsu.edu) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Harris GRStone MHO’Bryant HSProulx CMJohnson RL. Short-term performance effects of high power, high force, or combined weight-training methods. J Strength Cond Res. 2000;14(1):1420. doi:10.1519/1533-4287(2000)014<0014:STPEOH>2.0.CO;2

    • Search Google Scholar
    • Export Citation
  • 2.

    Hoffman JRRatamess NAKlatt Met al. Comparison between different off-season resistance training programs in Division III American college football players. J Strength Cond Res. 2009;23(1):1119. PubMed ID: 19130636 doi:10.1519/JSC.0b013e3181876a78

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Stone MHPotteiger JAPierce KCet al. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. J Strength Cond Res. 2000;14(3):332337. doi:10.1519/00124278-200008000-00015

    • Search Google Scholar
    • Export Citation
  • 4.

    Campos GELuecke TJWendeln HKet al. Muscular adaptations in response to three different resistance-training regimens: specificity of repetition maximum training zones. Eur J Appl Physiol. 2002;88(1–2):5060. PubMed ID: 12436270 doi:10.1007/s00421-002-0681-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Aagaard PSimonsen EBAndersen JLMagnusson PDyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol. 2002;93(4):13181326. doi:10.1152/japplphysiol.00283.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Suchomel TJNimphius SStone MH. The importance of muscular strength in athletic performance. Sports Med. 2016;46(10):14191449. PubMed ID: 26838985 doi:10.1007/s40279-016-0486-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Maffiuletti NAAagaard PBlazevich AJFolland JTillin NDuchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):10911116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Fry AC. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004;34(10):663679. PubMed ID: 15335243 doi:10.2165/00007256-200434100-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tricoli VLamas LCarnevale RUgrinowitsch C. Short-term effects on lower-body functional power development: weightlifting vs vertical jump training programs. J Strength Cond Res. 2005;19(2):433437. PubMed ID: 15903387 doi:10.1519/R-14083.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cormie PMcCaulley GOMcBride JM. Power versus strength-power jump squat training: influence on the load-power relationship. Med Sci Sports Exerc. 2007;39(6):9961003. PubMed ID: 17545891 doi:10.1097/mss.0b013e3180408e0c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Toji HSuei KKaneko M. Effects of combined training loads on relations among force, velocity, and power development. Can J Appl Physiol. 1997;22(4):328336. PubMed ID: 9263617 doi:10.1139/h97-021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Toji HKaneko M. Effect of multiple-load training on the force-velocity relationship. J Strength Cond Res. 2004;18(4):792795. PubMed ID: 15574085 doi:10.1519/13933.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Christou MSmilios ISotiropoulos KVolaklis KPilianidis TTokmakidis SP. Effects of resistance training on the physical capacities of adolescent soccer players. J Strength Cond Res. 2006;20(4):783791. PubMed ID: 17194231 doi:10.1519/R-17254.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Fink JKikuchi NYoshida STerada KNakazato K. Impact of high versus low fixed loads and non-linear training loads on muscle hypertrophy, strength and force development. Springerplus. 2016;5(1):698. PubMed ID: 27350928 doi:10.1186/s40064-016-2333-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tan B. Manipulating resistance training program variables to optimize maximum strength in men: a review. J Strength Cond Res. 1999;13(3):289304. doi:10.1519/00124278-199908000-00019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    DeWeese BHHornsby GStone MStone MH. The training process: planning for strength-power training in track and field. Part 2: practical and applied aspects. J Sport Health Sci. 2015;4(4):318324. doi:10.1016/j.jshs.2015.07.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Painter KBHaff GGRamsey MWet al. Strength gains: block versus daily undulating periodization weight training among track and field athletes. Int J Sport Physiol Perform. 2012;7(2):161169. doi:10.1123/ijspp.7.2.161

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    DeWeese BHHornsby GStone MStone MH. The training process: planning for strength-power training in track and field. Part 1: theoretical aspects. J Sport Health Sci. 2015;4(4):308317. doi:10.1016/j.jshs.2015.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kawamori NRossi SJJustice BDet al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483491. PubMed ID: 16937959 doi:10.1519/18025.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Thomas CComfort PChiang CYJones PA. Relationship between isometric mid-thigh pull variables and sprint and change of direction performance in collegiate athletes. J Trainology. 2015;4(1):610. doi:10.17338/trainology.4.1_6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    McGuigan MRWinchester JB. The relationship between isometric and dynamic strength in college football players. J Sports Sci Med. 2008;7(1):101105. PubMed ID: 24150141

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Day MLMcGuigan MRBrice GFoster C. Monitoring exercise intensity during resistance training using the session RPE scale. J Strength Cond Res. 2004;18(2):353358. PubMed ID: 15142026 doi:10.1519/R-13113.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    McGuigan MRFoster C. A new approach to monitoring resistance training. Strength Cond J. 2004;26(6):4247. doi:10.1519/00126548-200412000-00008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Stone MHStone MESands WA. Principles and Practice of Resistance Training. Champagne, IL: Human Kinetics; 2007.

  • 26.

    DeWeese BSams MSerrano A. Sliding toward Sochi—part 1: a review of programming tactics used during the 2010–2014 quadrennial. Natl Strength Cond Assoc Coach. 2014;1(3):3042.

    • Search Google Scholar
    • Export Citation
  • 27.

    Kraska JMRamsey MWHaff GGet al. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int J Sport Physiol. 2009;4(4):461473. doi:10.1123/ijspp.4.4.461

    • Search Google Scholar
    • Export Citation
  • 28.

    Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):11981204. doi:10.1119/1.1397460

  • 29.

    Bazyler CDMizuguchi SHarrison APet al. Changes in muscle architecture, explosive ability, and track and field throwing performance throughout a competitive season and after a taper. J Strength Cond Res. 2017;31(10):27852793. PubMed ID: 27575250 doi:10.1519/JSC.0000000000001619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Trappe SCostill DThomas R. Effect of swim taper on whole muscle and single muscle fiber contractile properties. Med Sci Sports Exerc. 2000;32(12):4856. PubMed ID: 11224794

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Murach KRaue UWilkerson Bet al. Single muscle fiber gene expression with run taper. PLoS ONE. 2014;9(9):108547. PubMed ID: 25268477 doi:10.1371/journal.pone.0108547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013;4:863. PubMed ID: 24324449 doi:10.3389/fpsyg.2013.00863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mero AJaakkola LKomi PV. Relationships between muscle fibre characteristics and physical performance capacity in trained athletic boys. J Sports Sci. 1991;9(2):161171. PubMed ID: 1895353 doi:10.1080/02640419108729877

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Andersen LLTufekovic GZebis MKet al. The effect of resistance training combined with timed ingestion of protein on muscle fiber size and muscle strength. Metabolism. 2005;54(2):151156. PubMed ID: 15690307 doi:10.1016/j.metabol.2004.07.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Moran-Navarro RPerez CEMora-Rodriguez Ret al. Time course of recovery following resistance training leading or not to failure. Eur J Appl Physiol. 2017;117(12):23872399. PubMed ID: 28965198 doi:10.1007/s00421-017-3725-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Chiu LZFry ACSchilling BKJohnson EJWeiss LW. Neuromuscular fatigue and potentiation following two successive high intensity resistance exercise sessions. Eur J Appl Physiol. 2004;92(4–5):385392. PubMed ID: 15185085 doi:10.1007/s00421-004-1144-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Spineti JFigueiredo Tde Salles BFet al. Comparison between different periodization models on muscular strength and thickness in a muscle group increasing sequence. Rev Bras Med Esporte. 2013;19(4):280286. doi:10.1590/S1517-86922013000400011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hornsby WGentles JMacDonald CMizuguchi SRamsey MStone M. Maximum strength, rate of force development, jump height, and peak power alterations in weightlifters across five months of training. Sports. 2017;5(4):78. doi:10.3390/sports5040078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Stone MHSanborn KO’Bryant HSet al. Maximum strength-power-performance relationships in collegiate throwers. J Strength Cond Res. 2003;17(4):739745. PubMed ID: 14636111

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Pritchard HKeogh JBarnes MMcGuigan M. Effects and mechanisms of tapering in maximizing muscular strength. Strength Cond J. 2015;37(2):7283. doi:10.1519/SSC.0000000000000125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Meeusen RDuclos MFoster Cet al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 620 620 107
Full Text Views 25 25 5
PDF Downloads 19 19 2
Altmetric Badge
PubMed
Google Scholar
Cited By