The Influence of Sport-Field Properties on Muscle-Recruitment Patterns and Metabolic Response

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate different sport-field properties’ influence on muscle-recruitment patterns and metabolic response during a series of running and agility drills. Methods: Eleven male athletes were fitted with a standard multipurpose training shoe. The test protocol consisting of 4 high-intensity trials with 60-s rests between trials performed on 2 fields with different properties. Time-dependent field properties were measured using the American Standards for Testing and Materials protocol (F-1936). A 30-m pretest and posttest sprint determined fatigue and player performance. Electromyography (EMG) recorded muscle activity for vastus medialis, biceps femoris, gastrocnemius medial head, and tibialis anterior, and metabolic activity analyzed maximal oxygen consumption, heart rate, respiratory exchange ratio, metabolic equivalent, and energy expenditure. Results: A difference was calculated for muscle activity across trials (P = .01) for both surfaces. Muscle activity was <13% on the field with less energy return (P = .01). Metabolic components (maximal oxygen consumption, heart rate, respiratory exchange ratio, metabolic equivalent, and energy expenditure) were significantly different across trials (P = .01) but not significantly different between fields. The participants completed the agility course (5.2%) faster on the field with greater energy return, while caloric expenditure was similar between fields. Conclusions: The findings indicate that field mechanical properties influence muscle-activation patterns. The field demonstrating the greatest magnitude of energy return produces the lowest sprint and agility course times; however, performing on a field exhibiting unfamiliar mechanical properties could cause the athlete to produce atypical movement patterns that might contribute to overuse of the neuromuscular system.

Hales is with the Dept. of Health Promotion and Physical Education and the Wellstar College of Health and Human Services, and Johnson, the Dept. of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA.

Hales (mhales@kennesaw.edu) is corresponding author.
  • 1.

    Rennie DJ, Vanrenterghem J, Littlewood M, Drust B. Can the natural turf pitch be viewed as a risk factor for injury within Association Football? J Sci Med Sport. 2016;19(7):547552. PubMed ID: 26209426 doi:10.1016/j.jsams.2015.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tamura A, Hayashi S, Matsumoto T. Effect of loading rate on viscoelastic properties and local mechanical heterogeneity of freshly isolated muscle fiber bundles subjected to uniaxial stretching. J Mech Med Biol. 2016;16(6):1650086. doi:10.1142/S021951941650086X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    McMahon TA, Greene PR. The influence of track compliance on running. J Biomech. 1979;12(12):893904. PubMed ID: 528547 doi:10.1016/0021-9290(79)90057-5

  • 4.

    Pinnington HC, Lloyd DG, Besier TF, Dawson B. Kinematic and electromyography analysis of submaximal differences running on a firm surface compared with soft, dry sand. Eur J Appl Physiol. 2005;94(3):242253. PubMed ID: 15815938 doi:10.1007/s00421-005-1323-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    World Rugby. Regulation 22, standard relating to the use of artificial rugby turf. 2008. http://playerwelfare.worldrugby.org/?documentid=57. Accessed May 15, 2018.

    • Export Citation
  • 6.

    Federation Internationale de Football Association. Quality concept for football turf. 2009. http://www.fifa.com/mm/document/afdeveloping/pitchequip/fqc_football_turf_folder_342.pdf. Accessed May 15, 2018.

    • Export Citation
  • 7.

    Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM. Energetics and mechanics of human running on surfaces of different stiffness. J Appl Physiol. 2002;92(2):469478. PubMed ID: 11796653 doi:10.1152/japplphysiol.01164.2000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sassi A, Stefanescu A, Menaspa P, Bosio A, Riggo M, Rampinini E. The cost of running on natural grass and artificial turf surfaces. J Strength Cond Res. 2011;25(3):606611. PubMed ID: 20647952 doi:10.1519/JSC.0b013e3181c7baf9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Nigg BM. Impact forces in running. Curr Opin Orthop. 1997;8(6):4347. doi:10.1097/00001433-199712000-00007

  • 10.

    Green HJ. Mechanisms of muscle fatigue in intense exercise. J Sports Sci. 1997;15(3):247256. PubMed ID: 9232550 doi:10.1080/026404197367254

  • 11.

    Mercer JA, Bates BT, Dufek JS, Hrelijac A. Characteristics of shock attenuation during fatigued running. J Sports Sci. 2003;21(11):911919. PubMed ID: 14626370 doi:10.1080/0264041031000140383

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mizrahi J, Verbitsky O, Isakov E. Fatigue-related loading imbalance on the shank in running: a possible factor in stress fractures. Ann Biomed Eng. 2000;28(4):463469. PubMed ID: 10870903 doi:10.1114/1.284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Steffen K, Anderson TE, Bahr R. Risk of injury on artificial turf and natural grass in young female football players. Br J Sports Med. 2007;41(suppl 1):3337. PubMed ID: 17550919 doi:10.1136/bjsm.2007.036665

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Zanetti EM, Bignardi C, Franceschini G, Audenino AL. Amateur football pitches: mechanical properties of the natural ground and of different artificial turf infills and their biomechanical implications. J Sports Sci. 2013;31:767778. PubMed ID: 23230960 doi:10.1080/02640414.2012.750005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Stefanyshyn DJ, Nigg BM. Energy and performance aspects in sport surfaces. In: Nigg BM, Cole GK, Stefanyshyn DJ, eds. Sport Surfaces—Biomechanics, Injuries, Performance, Testing and Installation. Calgary, Canada: University of Calgary; 2003:3146.

    • Search Google Scholar
    • Export Citation
  • 16.

    Scott LA, Murley GS, Wickham J. The influence of footwear on the electromyographic activity of selected lower limb muscles during walking. J Electromyogr Kinesiol. 2012;22(6):10101016. PubMed ID: 22835487 doi:10.1016/j.jelekin.2012.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Andersson H, Ekblom B, Krustrup P. Elite football on artificial turf versus natural grass: movement patterns, technical standards, and player impressions. J Sports Sci. 2008;26(2):113122. PubMed ID: 17852688 doi:10.1080/02640410701422076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Burillo P, Gallardo L, Felipe JL, Gallardo AM. Artificial turf surfaces: perception of safety, sporting feature, satisfaction and preference of football users. Eur J Sport Sci. 2014;14:S437S447. PubMed ID: 24444239 doi:10.1080/17461391.2012.713005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    DiMichele R, DiRenzo AM, Ammazzalorso S, Merni F. Comparison of physiological responses to an incremental running test on treadmill, natural grass, and synthetic turf in young soccer players. J Strength Cond Res. 2009;23(3):939945. PubMed ID: 19387382 doi:10.1519/JSC.0b013e3181a07b6e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Katkat D, Bulut Y, Demir M, Akar S. Effects of different sport surfaces on muscle performance. Biol Sport. 2009;26(3):285296. doi:10.5604/20831862.894793

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Skovron ML, Levy IM, Agel J. Living with artificial grass: a knowledge update. Part 2: epidemiology. Am J Sports Med. 1990;18(5):510513. PubMed ID: 2252093 doi:10.1177/036354659001800511

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Nikooyan AA, Zadpoor AA. Effects of muscle fatigue on the ground reaction force and soft-tissue vibrations during running: a model study. IEEE Trans Biomed Eng. 2012;59(3):797804. PubMed ID: 22180505 doi:10.1109/TBME.2011.2179803

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Dolenec A, Stirn I, Strojnik V. Activation pattern of lower leg muscles in running on asphalt, gravel and grass. Coll Antropol. 2015;39(suppl 1):167172. PubMed ID: 26434026

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Potvin JR, Fuglevand AJ. A motor unit-based model of muscle fatigue. PLoS Comput Biol. 2017;13(6):e1005581. PubMed ID: 28574981 doi:10.1371/journal.pcbi.1005581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kerr R, Arnold GP, Drew TS, Cochrane LA, Abboud RJ. Shoes influence lower limb muscle activity and may predispose the wearer to lateral ankle ligament injury. J Orthop Res. 2009;27:318324. PubMed ID: 18846547 doi:10.1002/jor.20744

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Dixon SJ, Stiles VH. Impact absorption of tennis shoe-surface combinations. Sports Eng. 2003;6(1):19. doi:10.1007/BF02844155

  • 27.

    Kim MK, Kim YH, Yoo KT. Effects of shoe type on lower extremity muscle activity during treadmill walking. J Phys Ther Sci. 2015;27(12):38333836. PubMed ID: doi:10.1589/jpts.27.3833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 237 237 29
Full Text Views 2 2 1
PDF Downloads 3 3 1