Effects of Concentric and Eccentric Strength Training on Fatigue Induced by Concentric and Eccentric Exercises

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To compare the concentric and eccentric training effects on fatigue induced by eccentric and concentric protocols. Methods: A total of 22 men and women (22 [3.6] y) were assigned to concentric (GCON, n = 11) or eccentric training (GECC, n = 11). The concentric (CON) and eccentric (ECC) protocols were composed of 4 sets of 20 knee-extension/flexion repetitions. Force losses were analyzed by comparing 10 repetitions’ mean torques during the protocols and by verifying the maximal voluntary contraction and rate of torque development before and after the protocols. Muscle damage was assessed using echo intensity of the vastus lateralis 48 h after the protocols. Training consisted of 6 wk of isokinetic exercise at 60°/s (concentric or eccentric) twice weekly. Results: Before training, both protocols resulted in dynamic and isometric force losses in GCON and GECC (P < .01), but the magnitude was greater after the CON protocol than after the ECC protocol (P < .001). After training, both GCON and GECC showed similar force decreases during the CON and ECC protocols (P < .01), and these changes were not different from the pretraining decreases. Regarding maximal voluntary contraction after training, GECC showed lower force decreases than GCON after ECC exercise (−13.7% vs −22.3%, respectively, P < .05), whereas GCON showed lower maximal voluntary contraction decreases after CON exercise compared with pretraining (−29.2%, P < .05). Losses in rate of torque development were similar after the protocols before and after the training regimens. No changes in echo intensity were observed after the protocols before and after training. Conclusion: Both interventions resulted in similar force decreases during fatigue protocols compared with those associated with pretraining.

Cadore, Grazioli, and Pinto are with the Exercise Research Laboratory, Physical Education School, Federal University of Rio Grande do Sul, Porto Alegre, Brazil. Cadore, González-Izal, Setuain, and Izquierdo are with the Dept of Health Sciences, Public University of Navarre, Center for Biomedical Research in Fragility and Healthy Aging, Navarrabiomed, Navarra Inst for Health Research, Pamplona,  Spain.

Izquierdo (mikel.izquierdo@gmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Ekstrand JHägglund MWaldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):12261232. PubMed ID: 21335353 doi:10.1177/0363546510395879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ekstrand JWaldén MHägglund M. Hamstring injuries have increased by 4% annually in men’s professional football, since 2001: a 13-year longitudinal analysis of the UEFA Elite Club injury study. Br J Sports Med. 2016;50(12):731737. PubMed ID: 26746908 doi:10.1136/bjsports-2015-095359

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Li RCMaffulli NHsu YCChan KM. Isokinetic strength of the quadriceps and hamstrings and functional ability of anterior cruciate deficient knees in recreational athletes. Br J Sports Med. 1996;30(2):161164. PubMed ID: 8799604 doi:10.1136/bjsm.30.2.161

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lin MJChen TCChen HLWu BHNosaka K. Low-intensity eccentric contractions of the knee extensors and flexors protect against muscle damage. Appl Physiol Nutr Metab. 2015;40(10):10041011. PubMed ID: 26319562 doi:10.1139/apnm-2015-0107

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Alfredson H. The chronic painful Achilles and patellar tendon: research on basic biology and treatment. Scand J Med Sci Sports. 2005;15:252259. PubMed ID: 15998342 doi:10.1111/j.1600-0838.2005.00466.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Proske UMorgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001;537:333345. PubMed ID: 11731568 doi:10.1111/j.1469-7793.2001.00333.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Chleboun GSHowell JNConatser RRGiesey JJ. Relationship between muscle swelling and stiffness after eccentric exercise. Med Sci Sports Exerc. 1998;30:529535. PubMed ID: 9565934 doi:10.1097/00005768-199804000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Kay ADBlazevich AJ. Isometric contractions reduce plantar flexor moment, Achilles tendon stiffness, and neuromuscular activity but remove the subsequent effects of stretch. J Appl Physiol. 2009;107:11811189. PubMed ID: 19644033 doi:10.1152/japplphysiol.00281.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Tomberlin JPBasford JRSchwen EEet al. Comparative study of isokinetic eccentric and concentric quadriceps training. J Orthop Sports Phys Ther. 1992;14:3136. doi:10.2519/jospt.1991.14.1.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Hortobagyi THill JPHoumard JAet al. Adaptive responses to muscle lengthening and shortening in humans. J Appl Physiol. 1996;80:765772. PubMed ID: 8964735 doi:10.1152/jappl.1996.80.3.765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hortobagyi TBarrier JBeard Det al. Greater initial adaptations to submaximal muscle lengthening than maximal shortening. J Appl Physiol. 1996;81:16771682. PubMed ID: 8904586 doi:10.1152/jappl.1996.81.4.1677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Blazevich AJCannavan DColeman DRHorne S. Influence of concentric and eccentric resistance training on architectural adaptation in human quadriceps muscles. J Appl Physiol. 2007;103:15651575. PubMed ID: 17717119 doi:10.1152/japplphysiol.00578.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Higbie EJCureton KJWarren GL 3rdPrior BM. Effects of concentric and eccentric training on muscle strength, cross-sectional area, and neural activation. J Appl Physiol. 1996;81:21732181. PubMed ID: 8941543 doi:10.1152/jappl.1996.81.5.2173

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Norrbrand LFluckey JDPozzo MTesch PA. Resistance training using eccentric overload induces early adaptations in skeletal muscle size. Eur J Appl Physiol. 2008;102:271281. PubMed ID: 17926060 doi:10.1007/s00421-007-0583-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ben-Sira DAyalon ATavi M. The effect of different types of strength training on concentric strength in women. J Strength Cond Res. 1995;9:143148. doi:10.1519/1533-4287(1995)009<0143:TEODTO>2.3.CO;2

    • Search Google Scholar
    • Export Citation
  • 16.

    Cadore ELGonzález-Izal MPallarés JGet al. Muscle conduction velocity, strength, neural activity, and morphological changes after eccentric and concentric training. Scand J Med Sci Sports. 2014;24:343352. PubMed ID: 24833263 doi:10.1111/sms.12186

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gonzalez-Izal MMalanda ANavarro-Amezqueta Iet al. EMG spectral indices and muscle power fatigue during dynamic contractions. J Electromyogr Kinesiol. 2010;20:233240. PubMed ID: 19406664 doi:10.1016/j.jelekin.2009.03.011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Izquierdo MGonzalez-Izal MNavarro-Amezqueta Iet al. Effects of strength training on muscle fatigue mapping from sEMG and blood metabolites. Med Sci Sports Exerc. 2011;43:303311. PubMed ID: 20581711 doi:10.1249/MSS.0b013e3181edfa96

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gonzalez-Izal MLusa Cadore EIzquierdo M. Muscle conduction velocity, surface electromyography variables, and echo intensity during concentric and eccentric fatigue. Muscle Nerve. 2014;49(3):389397. PubMed ID: 24741684 doi:10.1002/mus.23926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Chen TCLin KYChen HLLin MJNosaka K. Comparison in eccentric exercise-induced muscle damage among four limb muscles. Eur J Appl Physiol. 2011;111(2):211223. PubMed ID: 20852880 doi:10.1007/s00421-010-1648-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Chen TCChen HLLin MJet al. Effect of two maximal isometric contractions on eccentric exercise-induced muscle damage of the elbow flexors. Eur J Appl Physiol. 2013;113:15451554. PubMed ID: 23307011 doi:10.1007/s00421-012-2581-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Nosaka KNewton MSacco PChapman DLavender A. Partial protection against muscle damage by eccentric actions at short muscle lengths. Med Sci Sports Exerc. 2005;37:746753. PubMed ID: 15870627 doi:10.1249/01.MSS.0000162691.66162.00

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Tesch PADudley GADuvoisin MRHather BMHarris RT. Force and EMG signal patterns during repeated bouts of concentric or eccentric muscle actions. Acta Physiol Scand. 1990;138:263271. PubMed ID: 2327260 doi:10.1111/j.1748-1716.1990.tb08846.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hamlin MJQuigley BM. Quadriceps concentric and eccentric exercise 1: changes in contractile and electrical activity following eccentric and concentric exercise. J Sci Med Sport. 2001;4(1):88103. PubMed ID: 11339497 doi:10.1016/S1440-2440(01)80011-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Newham DJMcPhail GMills KREdwards RH. Ultrastructural changes after concentric and eccentric contractions of human muscle. J Neurol Sci. 1983;61(1):109122. PubMed ID: 6631446 doi:10.1016/0022-510X(83)90058-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Linnamo VBottas RKomi PV. Force and EMG power spectrum during and after eccentric and concentric fatigue. J Electromyogr Kinesiol. 2000;10:293300. PubMed ID: 11018439 doi:10.1016/S1050-6411(00)00021-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Pasquet BCarpentier ADuchateau JHainaut K. Muscle fatigue during concentric and eccentric contractions. Muscle Nerve. 2000;23:17271735. PubMed ID: 11054752 doi:10.1002/1097-4598(200011)23:11<1727::AID-MUS9>3.0.CO;2-Y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mullaney MJMcHugh MP. Concentric and eccentric muscle fatigue of the shoulder rotators. Int J Sports Med. 2006;27:725729. PubMed ID: 16586324 doi:10.1055/s-2005-872870

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Enoka RMStuart DG. Neurobiology of muscle fatigue. J Appl Physiol. 1992;72(5):16311648. PubMed ID: 1601767 doi:10.1152/jappl.1992.72.5.1631

  • 30.

    Izquierdo MIbañez JCalbet JAet al. Neuromuscular fatigue after resistance training. Int J Sports Med. 2009;30(8):614623. PubMed ID: 19382055 doi:10.1055/s-0029-1214379

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 146 146 48
Full Text Views 11 11 5
PDF Downloads 9 9 3
Altmetric Badge
PubMed
Google Scholar