Training-Monitoring Engagement: An Evidence-Based Approach in Elite Sport

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: Poor athlete buy-in and adherence to training-monitoring systems (TMS) can be problematic in elite sport. This is a significant issue, as failure to record, interpret, and respond appropriately to negative changes in athlete well-being and training status may result in undesirable consequences such as maladaptation and/or underperformance. This study examined the perceptions of elite athletes to their TMS and their primary reasons for noncompletion. Methods: Nine national-team sprint athletes participated in semistructured interviews on their perceptions of their TMS. Interview data were analyzed qualitatively, based on grounded theory, and TMS adherence information was collected. Results: Thematic analysis showed that athletes reported their main reason for poor buy-in to TMS was a lack of feedback on their monitoring data from key staff. Furthermore, training modifications made in response to meaningful changes in monitoring data were sometimes perceived to be disproportionate, resulting in dishonest reporting practices. Conclusions: Perceptions of opaque or unfair decision making on training-program modifications and insufficient feedback were the primary causes for poor athlete TMS adherence. Supporting TMS implementation with a behavioral-change model that targets problem areas could improve buy-in and enable limited resources to be appropriately directed.

The authors are with the Dept of Sport, Exercise and Health, University of Winchester, Winchester, United Kingdom.

Neupert (emma.neupert@winchester.ac.uk) is corresponding author.

Supplementary Materials

    • Supplementary Material A (PDF 266 KB)
    • Supplementary Material B (PDF 175 KB)
  • 1.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. PubMed ID: 25200666 doi:10.1007/s40279-014-0253-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Saw A, Main LC, Gastin PB. Monitoring athletes through self-report: factors influencing implementation. J Sports Sci Med. 2015;14(1):137146.PubMed ID: 25729301

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Taylor KL, Chapman DW, Cronin JB, Newton MJ, Gill N. Fatigue monitoring in high performance sport: a survey of current trends. J Aust Strength Cond. 2012;20(1):1223.

    • Search Google Scholar
    • Export Citation
  • 4.

    Saw A, Main LC, Gastin PB. Strategies for practitioners to effectively incorporate self-report measures into athletic preparation. J Sci Med Sport. 2017;20:6566. doi:10.1016/j.jsams.2017.01.173

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Saw A, Kellmann M, Main LC, Gastin PB. Athlete self-report measures in research and practice: considerations for the discerning reader and fastidious practitioner. Int J Sports Physiol Perform. 2017;12(suppl 2):S2127S2135.PubMed ID: 27834546 doi:10.1123/ijspp.2016-0395

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Donaldson A, Finch CF. Planning for implementation and translation: seek first to understand the end-users’ perspectives. Br J Sports Med. 2012;46(5):306307. PubMed ID: 22006931 doi:10.1136/bjsports-2011-090461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Roos L, Taube W, Brandt M, Heyer L, Wyss T. Monitoring of daily training load and training load responses in endurance sports: what do coaches want? Schweiz Z Sportmed Sporttraumatol. 2013;61(4):3036.

    • Search Google Scholar
    • Export Citation
  • 8.

    Foster C, Rodriguez-Marroyo JA, De Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12(suppl 2):S22S28. PubMed ID: 28253038 doi:10.1123/IJSPP.2016-0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barboza SD, Bolling CS, Nauta J, van Mechelen W, Verhagen E. Acceptability and perceptions of end-users towards an online sports-health surveillance system. BMJ Open Sport Exerc Med. 2017;3(1):e000275. PubMed ID: 29071115 doi:10.1136/bmjsem-2017-000275

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cunniffe B, Griffiths H, Proctor W, Jones KP, Baker JS, Davies B. Illness monitoring in team sports using a web-based training diary. Clin J Sport Med. 2009;19(6):476481. PubMed ID: 19898075 doi:10.1097/JSM.0b013e3181c125d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Saw A, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50:281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Davis R, Campbell R, Hildon Z, Hobbs L, Michie S. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol Rev. 2015;9(3):323344. PubMed ID: 25104107 doi:10.1080/17437199.2014.941722

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Prochaska JO, Velicer WF. The transtheoretical model of health behavior change. Am J Health Promot. 1997;12(1):3848. doi:10.4278/0890-1171-12.138

  • 14.

    Michie S, van Stralen MM, West R. The behaviour change wheel: a new method for characterising and designing behaviour change interventions. Implement Sci. 2011;6(1):42. PubMed ID: 21513547 doi:10.1186/1748-5908-6-42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Corbin JM, Strauss AL. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. Thousand Oaks, CA: Sage Publications; 2008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Robertson S, Bartlett JD, Gastin PB. Red, amber, or green? Athlete monitoring in team sport: the need for decision-support systems. Int J Sports Physiol Perform. 2017;12(suppl 2):S273S279. PubMed ID: 27967289 doi:10.1123/ijspp.2016-0541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Harris L, Brown G. Mixing interview and questionnaire methods: practical problems in aligning data. Pract Assess Res Eval. 2010;15(1):119.

    • Search Google Scholar
    • Export Citation
  • 18.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2161S2170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Casas-Arce P, Lourenço SM, Martinez-Jerez F. The performance effect of feedback frequency and detail: evidence from a field experiment in customer satisfaction. J Account Res. 2017;55:10511088. doi:10.1111/1475-679X.12184

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Lurie NH, Swaminathan JM. Is timely information always better? The effect of feedback frequency on decision making. Organ Behav Hum Decis Process. 2009;108(2):315329. doi:10.1016/j.obhdp.2008.05.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C, Florhaug J, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wallace LK, Slattery KM, Coutts AJ. The ecological validity and application of the session-RPE method for quantifying training loads in swimming. J Strength Cond Res. 2009;23(1):3338. PubMed ID: 19002069 doi:10.1519/JSC.0b013e3181874512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McCall A, Dupont G, Ekstrand J. Injury prevention strategies, coach compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: a survey of teams’ head medical officers. Br J Sports Med. 2016;50:725730. PubMed ID: 26795611 doi:10.1136/bjsports-2015-095259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Michie S, Johnston M. Theories and techniques of behaviour change: developing a cumulative science of behaviour change. Health Psychol Rev. 2012;6(1):16. doi:10.1080/17437199.2012.654964

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Higgins JP. Smartphone applications for patients’ health and fitness. Am J Med. 2016;129(1):1119. PubMed ID: 26091764 doi:10.1016/j.amjmed.2015.05.038

  • 26.

    Michie S, Atkins L, West R. The Behaviour Change Wheel Book—A Guide To Designing Interventions. UK: Silverback Publishing; 2014 .

  • 27.

    Drew M, Finch CF. The relationship between training load and injury, illness and soreness: a systematic and literature review. Sports Med. 2016;46:861883. PubMed ID: 26822969 doi:10.1007/s40279-015-0459-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Sinnott C, Mercer SW, Payne RA, Duerden M, Bradley CP, Byrne M. Improving medication management in multimorbidity: development of the MultimorbiditY COllaborative Medication Review And DEcision Making (MY COMRADE) intervention using the Behaviour Change Wheel. Implement Sci. 2015;10:132. PubMed ID: 26404642 doi:10.1186/s13012-015-0322-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 615 524 39
Full Text Views 57 49 15
PDF Downloads 32 27 1