Effects of Strength Training on Olympic Time-Based Sport Performance: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To evaluate the effect of strength training on Olympic time-based sports (OTBS) time-trial performance and provide an estimate of the impact of type of strength training, age, training status, and training duration on OTBS time-trial performance. Methods: A search on 3 electronic databases was conducted. The analysis comprised 32 effects in 28 studies. Posttest time-trial performance of intervention and control group from each study was used to estimate the standardized magnitude of impact of strength training on OTBS time-trial performance. Results: Strength training had a moderate positive effect on OTBS time-trial performance (effect size = 0.59, P < .01). Subgroup meta-analysis showed that heavy weight training (effect size = 0.30, P = .01) produced a significant effect, whereas other modes did not induce significant effects. Training status as factorial covariate was significant for well-trained athletes (effect size = 0.62, P = .04), but not for other training levels. Meta-regression analysis yielded nonsignificant relationship with age of the participants recruited (β = −0.04; 95% confidence interval, −0.08 to 0.004; P = .07) and training duration (β = −0.05; 95% confidence interval, −0.11 to 0.02; P = .15) as continuous covariates. Conclusion: Heavy weight training is an effective method for improving OTBS time-trial performance. Strength training has greatest impact on well-trained athletes regardless of age and training duration.

Lum is with Sport Science and Sport Medicine, Singapore Sport Inst, Singapore. Lum and Barbosa are with Physical Education and Sports Science, National Inst of Education, Nanyang Technological University, Singapore. Barbosa is also with the Polytechnic Inst of Braganca, Braganca, Portugal.

Lum (dannylum82@gmail.com) is corresponding author.
  • 1.

    Donato AJ, Tench K, Glueck DH, et al. Declines in physiological functional capacity with age: a longitudinal study in peak swimming performance. J Appl Physiol. 1985;94:764–769. doi:10.1152/japplphysiol.00438.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Ingham S, Whyte G, Jones K, Nevill A. Determinants of 2000 m rowing ergometer performance in elite rowers. Eur J Appl Physiol. 2002;88:243–246. PubMed ID: 12458367 doi:10.1007/s00421-002-0699-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Joyner M, Coyle EF. Endurance exercise performance: the physiology of champions. J Physiol. 2008;586:35–44. PubMed ID: 17901124 doi:10.1113/jphysiol.2007.143834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Rabadan M, Diaz V, Calderon FJ, et al. Physiological determinants of speciality of elite middle- and long-distance runners. J Sports Sci. 2011; 29:975–982. PubMed ID: 21604227 doi:10.1080/02640414.2011.571271

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Conley DL, Krahenbuhl GS. Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc. 1980;12:357–360. PubMed ID: 7453514 doi:10.1249/00005768-198025000-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Lucia A, Hoyos J, Perez M, et al. Inverse relationship between VO2max and economy/efficiency in world-class cyclists. Med Sci Sports Exerc. 2002;34:529–2084. PubMed ID: 12471319 doi:10.1097/00005768-200203000-00021

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Morgan DW, Craib M. Physiological aspects of running economy. Med Sci Sports Exerc. 1992;24:456–461. PubMed ID: 1560743

  • 8.

    Blagrove RC, Howatson G, Hayes PR. Effects of strength training on the physiological determinants of middle- and long-distance running performance: a systematic review. Sports Med. 2018;48:1117–1149. PubMed ID: 29249083 doi:10.1007/s40279-017-0835-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Foss Ø, Hallen J. Cadence and performance in elite cyclists. Eur J Appl Physiol. 2005;93:453–462. PubMed ID: 15503124 doi:10.1007/s00421-004-1226-y

  • 10.

    Kjendlie P, Ingjer F, Stallman RK, Stray-Gundersen J. Factors affecting swimming economy in children and adults. Eur J Appl Physiol. 2004;93:65–74. PubMed ID: 15243747 doi:10.1007/s00421-004-1164-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34:465–485. PubMed ID: 15233599 doi:10.2165/00007256-200434070-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sunde A, Støren Ø, Bjerkaas M, et al. Maximal strength training improves cycling economy in competitive cyclists. J Strength Cond Res. 2010;24:2157–2165. PubMed ID: 19855311 doi:10.1519/JSC.0b013e3181aeb16a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aagaard P, Andersen JL. Effects of strength training on endurance capacity in top-level endurance athletes. Scand J Med Sci Sports. 2010;20:39–47. PubMed ID: 20840561 doi:10.1111/j.1600-0838.2010.01197.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Amaro NM, Morouco PG, Marques MC, et al. A systematic review on dry-land strength and conditioning training on swimming performance. Sci Sports. 2019:34:e1–e4. doi:10.1016/j.scispo.2018.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Berryman N, Mujika I, Arvisais D, Roubeix M. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13:57–63. doi:10.1123/ijspp.2017-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Denadai BS, de Aguiar RA, de Lima LCR, et al. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: a systematic review and meta-analysis. Sports Med. 2017;47:545–554. PubMed ID: 27497600 doi:10.1007/s40279-016-0604-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gallagher D, Dipietro L, Visek AJ, et al. The effects of concurrent endurance and resistance training on 200-m rowing ergometer times in collegiate male rowers. J Strength Cond Res. 2010;24:1208–1214. PubMed ID: 20386119 doi:10.1519/JSC.0b013e3181d8331e

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Lawton TW, Cronin JB, McGuigan MR. Strength testing and training of rowers. Sports Med. 2011;41:413–432. PubMed ID: 21510717 doi:10.2165/11588540-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lum D, Tan F, Pang J, Barbosa TM. Effects of intermittent sprint and plyometric training on endurance running performance. J Sport Health Sci. 2016. doi:10.1016/j.jbmt.2017.08.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pickett CW, Nosaka K, James Z, et al. Maximal upper-body strength and oxygen uptake are associated with performance in high-level 200-m sprint kayakers. J Strength Cond Res. 2018;32:3186–3192. PubMed ID: 29283928 doi:10.1519/JSC.0000000000002398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Yamato ML, Klau JF, Casa DJ, et al. The effects of resistance training on road cycling performance among highly trained cyclists: a systematic review. J Strength Cond Res. 2010;24:560–566. doi:10.1519/JSC.0b013e3181c86583

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Dumke CL, Prarrenroth CM, McBride JM, McCauley GO. Relationship between muscle strength, power and stiffness and running economy in trained male runners. Int J Sports Physiol Perfom. 2010;5:249–261. doi:10.1123/ijspp.5.2.249

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    McKean MR, Burkett B. The influence of upper-body strength on flat-water sprint kayak performance in elite athletes. Int J Sports Physiol Perform. 2014;9:707–714. doi:10.1123/ijspp.2013-0301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Stone MH, Sands WA, Carlock J, et al. The importance of isometric maximum strength and peak rate of force development in sprint cycling. J Strength Cond Res. 2004;18:878–884. PubMed ID: 15574097

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    van Someran KA, Howatson G. (2008). Prediction of flatwater kayaking performance. Int J Sports Physiol Perform. 2008;3:207–218. doi:10.1123/ijspp.3.2.207

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Aagaard P, Andersen JL, Bennekou M, et al. Effects of resistance training on endurance capacity and muscle fiber composition in young top-level cyclists. Scand J Med Sci Sports. 2011;21:e298–e307. PubMed ID: 21362056 doi:10.1111/j.1600-0838.2010.01283.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Amaro NM, Marinho DA, Marques MC, et al. Effects of dry-land strength and conditioning programs in age group swimmers. J Strength Cond Res. 2017;31:2447–2454. PubMed ID: 28825604 doi:10.1519/JSC.0000000000001709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Girold S, Jalab C, Bernard O, et al. Dry-land strength training vs electrical stimulation in sprint swimming performance. J Strength Cond Res. 2012;26:497–505. PubMed ID: 22233789 doi:10.1519/JSC.0b013e318220e6e4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Paavolainen L, Häkkinen K, Hamäläinen I, et al. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86:1527–1533. PubMed ID: 10233114 doi:10.1152/jappl.1999.86.5.1527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rønnestad BR, Hansen EA, Raastad T. In-season strength maintenance training increases well-trained cyclists’ performance. Eur J Appl Physiol. 2010;110:1269–1282. doi:10.1007/s00421-010-1622-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Allen SV, Hopkins WG. Age of peak competitive performance of elite athletes: a systematic review. Sports Med. 2015;45:1431–1441. PubMed ID: 26088954 doi:10.1007/s40279-015-0354-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Maher CG, Sherrington C, Herbert RD, et al. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther. 2003;83:713–721. PubMed ID: 12882612

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Aspenes S, Kjendlie P, Hoff J, Helgerud J. Combined strength and endurance training in competitive swimmers. J Sports Sci Med. 2009;8:357–365. PubMed ID: 24149998

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Bastiaans JJ, van Diemen ABJP, Veneberg T, Jeukendrup AE. The effects of replacing a portion of endurance training by explosive strength training on performance in trained cyclists. Eur J Appl Physiol. 2001;86:79–84. PubMed ID: 11820327 doi:10.1007/s004210100507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Berryman N, Maurel D, Bosquet L. Effect of plyometric vs dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24:1818–1825. PubMed ID: 20543734 doi:10.1519/JSC.0b013e3181def1f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bishop D, Jenkins DG, MacKinnon LT, et al. The effects of strength training on endurance performance and muscle characteristics. Med Sci Sports Exer. 1999;31:886–891. doi:10.1097/00005768-199906000-00018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Bishop DC, Smith RJ, Smith MF, Rigby HE. Effect of plyometric training on swimming block start performance in adolescents. J Strength Cond Res. 2009;23:2137–2143. PubMed ID: 19855343 doi:10.1519/JSC.0b013e3181b866d0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Cossor JM, Blanksby BA, Elliot BC. The influence of plyometric training on the freestyle tumble turn. J Sci Med Sport. 1999;2:106–116. PubMed ID: 10476974 doi:10.1016/S1440-2440(99)80190-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Damasceno MV, Lima-Silva AE, Pasqua LA, et al. Effects of resistance training on neuromuscular characteristics and pacing during 10-km running time trial. Eur J Appl Physiol. 2015;115:1513–1522. PubMed ID: 25697149 doi:10.1007/s00421-015-3130-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Garrido N, Marinho DA, Reis VM, et al. Does combined dry land strength and aerobic training inhibit performance of young competitive swimmers? J Sports Sci Med. 2010;9:300–310. PubMed ID: 24149700

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Karsten B, Stevens L, Colpus M, et al. The effects of sport-specific maximal strength and conditioning training on critical velocity, anaerobic running distance, and 5-km race performance. Int J Sports Physiol Perform. 2016;11:80–85. doi:10.1123/ijspp.2014-0559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Kelly CM, Burnett AF, Newton MJ. The effect of strength training on three-kilometer performance in recreational women endurance runners. J Strength Cond Res. 2008;22:396–403. PubMed ID: 18550953 doi:10.1519/JSC.0b013e318163534a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Naczk M, Lopacinski A, Brzenczek-Owczarzak W, et al. Influence of short-term inertial training on swimming performance in young swimmers. Eur J Sport Sci. 2016;17:369–377. PubMed ID: 27760491 doi:10.1080/17461391.2016.1241304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Paton CD, Hopkins WG. Combining explosive and high-resistance training improves performance in competitive cyclists. J Strength Cond Res. 2005;19:826–830. PubMed ID: 16287351

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pelligrino J, Ruby BC, Dumke CL. Effect of plyometrics on the energy cost of running and MHC and titin isoforms. Med Sci Sports Exerc. 2016;48:49–56. doi:10.1249/MSS.0000000000000747

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Potdevin FJ, Alberty ME, Chevutschi A, et al. Effects of a 6-week plyometric training program on performance in pubescent swimmers. J Strength Cond Res. 2011;25:80–86. PubMed ID: 21157388 doi:10.1519/JSC.0b013e3181fef720

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Psilander N, Frank P, Flockhart M, Sahlin K. Adding strength to endurance training does not enhance aerobic capacity in cyclists. Scand J Med Sci Sports. 2015;25:e353–e359. PubMed ID: 25438613 doi:10.1111/sms.12338

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Ramírez-Campillo R, Álvarez C, Henríquez-Olguín C, et al. Effects of plyometric training on endurance and explosive strength performance in competitive middle- and long-distance runners. J Strength Cond Res. 2014;28:97–104. doi:10.1519/JSC.0b013e3182a1f44c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Rønnestad BR, Hansen EA, Raastad T. Effect of heavy strength training on thigh muscle cross-sectional area, performance determinants, and performance in well-trained cyclists. Eur J Appl Physiol. 2010;108:965–975. doi:10.1007/s00421-009-1307-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Rønnestad BR, Hansen J, Nygaard H. 10 weeks of heavy strength training improves performance-related measurements in elite cyclists. J Sports Sci. 2016;35:1435–1441. doi:10.1080/02640414.2016.1215499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Schumann M, Mykkänen O, Doma K, et al. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners. Appl Physiol Nutr Metab. 2015;40:28–36. PubMed ID: 25494869 doi:10.1139/apnm-2014-0262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Vikmoen O, Ellefsen S, Trøen Ø, et al. Strength training improves cycling performance, fractional utilization of VO2max and cycling economy in female cyclists. Scand J Med Sci Sports. 2016;26:384–396. PubMed ID: 25892654 doi:10.1111/sms.12468

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Vikmoen O, Rønnestad BR, Ellefsen S, Raastad T. Heavy strength training improves running and cycling performance following prolonged submaximal work in well-trained female athletes. Physiol Rep. 2017;5:e13149–14. doi:10.14814/phy2.13149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Vorup J, Tybirk J, Gunnarsson TP, et al. Effect of speed endurance and strength training on performance, running economy and muscular adaptations in endurance-trained runners. Eur J Appl Physiol. 2016;116:1331–1341. PubMed ID: 27179795 doi:10.1007/s00421-016-3356-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557–560. PubMed ID: 12958120 doi:10.1136/bmj.327.7414.557

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 57.

    Bucheit M. Chasing the 0.2. Int J Sports Physiol Perform. 2016;11:417–418. doi:10.1123/ijspp.2016-0220

  • 58.

    Jones AM, Carter H. The effect of endurance training on parameters of aerobic fitness. Sports Med. 2000;29:373–386. PubMed ID: 10870864 doi:10.2165/00007256-200029060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48:871–877. PubMed ID: 24100287 doi:10.1136/bjsports-2013-092538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: training considerations. Sports Med. 2018;48:765–785. PubMed ID: 29372481 doi:10.1007/s40279-018-0862-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Cormie P, McGuigan MR, Newton RU. Adaptations in athletic performance after ballistic power versus strength training. Med Sci Sports Exerc. 2010;42:1582–1598. doi:10.1249/MSS.0b013e3181d2013a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Häkkinen K, Newton RU, Gordon SE, et al. Changes in muscle morphology, electromyographic activity, and force production characteristics during progressive strength training in young and older men. J Gerontol. 1998;53A:B415–B423. doi:10.1093/gerona/53A.6.B415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Martel GF, Roth SM, Ivey FM, et al. Age and sex affect human muscle fibre adaptations to heavy-resistance strength training. Exp Physiol. 2006;91:457–464. PubMed ID: 16407471 doi:10.1113/expphysiol.2005.032771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1218 1218 860
Full Text Views 68 68 54
PDF Downloads 41 41 31