Effects of External Counterpulsation on Postexercise Recovery in Elite Rugby League Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: External counterpulsation (ECP) has previously been used to treat cardiac patients via compression of the lower extremities during diastole to increase venous return and coronary perfusion. However, the effects of ECP on exercise performance and markers of recovery in elite athletes are largely unknown. Methods: On 2 separate occasions, 48 h apart, 7 elite National Rugby League players performed an identical 60-min field-based conditioning session followed by a 30-min period of either regular ECP treatment or placebo. Power measures during repeated cycle bouts and countermovement jump height and contraction time derivatives were measured at rest and 5 h postexercise. Saliva samples and venous blood samples were taken at rest, postexercise, and 5 h postexercise to assess stress, inflammation, and muscle damage. Results: After ECP treatment, cycling peak power output (P = .028; 11%) and accumulated peak power (P = .027; 14%) increased compared with the placebo condition. Postexercise plasma interleukin 1 receptor antagonist only increased after ECP (P = .024; 84%), and concentrations of plasma interleukin 1 receptor antagonist tended to be higher (P = .093; 76%) 5 h postexercise. Furthermore, testosterone-to-cortisol ratio was increased above baseline and placebo 5 h postexercise (P = .017–.029; 24–77%). The ratio of postexercise salivary α-amylase to immunoglobulin A decreased after treatment (P = .013; 50%) compared with the placebo control. Conclusions: Exercise performance and hormonal indicators of stress were improved and inflammation markers were reduced following acute ECP.

Roberts is with Griffith Sports Physiology and Performance, School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia, and Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia. Roberts, Caia, and Scott are with the School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia. James is with the Dept of Rehabilitation, Nutrition and Sport, School of Allied Health, LaTrobe University, Melbourne, Australia. Scott is also with the Inst for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom. Kelly is with the School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia.

Roberts (Llion.Roberts@Griffith.edu.au) is corresponding author.
  • 1.

    Gabbett TJ. Influence of fatigue on tackling technique in rugby league players. J Strength Cond Res. 2008;22(2):625–632. PubMed ID: 18550983 doi:10.1519/JSC.0b013e3181635a6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mujika I, Halson S, Burke LM, Balague G, Farrow D. An integrated, multifactorial approach to periodization for optimal performance in individual and team sports. Int J Sports Physiol Perform. 2018;13(5):538–561. PubMed ID: 29848161 doi:10.1123/ijspp.2018-0093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dupuy O, Douzi W, Theurot D, Bosquet L, Dugue B. An evidence-based approach for choosing post-exercise recovery techniques to reduce markers of muscle damage, soreness, fatigue, and inflammation: a systematic review with meta-analysis. Front Physiol. 2018;9:403. PubMed ID: 29755363 doi:10.3389/fphys.2018.00403

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Webb NP, Harris NK, Cronin JB, Walker C. The relative efficacy of three recovery modalities after professional rugby league matches. J Strength Cond Res. 2013;27(9):2449–2455. PubMed ID: 23238097 doi:10.1519/JSC.0b013e31827f5253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gill ND, Beaven CM, Cook C. Effectiveness of post-match recovery strategies in rugby players. Br J Sports Med. 2006;40(3):260–263. PubMed ID: 16505085 doi:10.1136/bjsm.2005.022483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Northey JM, Rattray B, Argus CK, Etxebarria N, Driller MW. Vascular occlusion and sequential compression for recovery after resistance exercise. J Strength Cond Res. 2016;30(2):533–539. PubMed ID: 26154154 doi:10.1519/JSC.0000000000001080

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    O’Donnell S, Driller MW. The effect of intermittent sequential pneumatic compression on recovery between exercise bouts in well-trained triathletes. J Sci Cycling. 2016;4(3):19–23.

    • Search Google Scholar
    • Export Citation
  • 8.

    Cochrane DJ, Booker HR, Mundel T, Barnes MJ. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise? Int J Sports Med. 2013;34(11):969–974. PubMed ID: 23606340 doi:10.1055/s-0033-1337944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sands WA, McNeal JR, Murray SR, Stone MH. Dynamic compression enhances pressure-to-pain threshold in elite athlete recovery: exploratory study. J Strength Cond Res. 2015;29(5):1263–1272. PubMed ID: 24531439 doi:10.1519/JSC.0000000000000412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chleboun GS, Howell JN, Baker HL, et al. Intermittent pneumatic compression effect on eccentric exercise-induced swelling, stiffness, and strength loss. Arch Phys Med Rehabil. 1995;76(8):744–749. PubMed ID: 7632130 doi:10.1016/S0003-9993(95)80529-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kephart WC, Mobley CB, Fox CD, et al. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue. Exp Physiol. 2015;100(7):852–864. PubMed ID: 25982469 doi:10.1113/EP085160

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sardina PD, Martin JS, Avery JC, Braith RW. Enhanced external counterpulsation (EECP) improves biomarkers of glycemic control in patients with non-insulin-dependent type II diabetes mellitus for up to 3 months following treatment. Acta Diabetol. 2016;53(5):745–752. PubMed ID: 27179825 doi:10.1007/s00592-016-0866-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ochoa AB, deJong A, Grayson D, Franklin B, McCullough P. Effect of enhanced external counterpulsation on resting oxygen uptake in patients having previous coronary revascularization and in healthy volunteers. Am J Cardiol. 2006;98(5):613–615. PubMed ID: 16923446 doi:10.1016/j.amjcard.2006.03.037

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gurovich AN, Braith RW. Enhanced external counterpulsation creates acute blood flow patterns responsible for improved flow-mediated dilation in humans. Hypertens Res. 2013;36(4):297–305. PubMed ID: 23076403 doi:10.1038/hr.2012.169

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Valenzuela PL, Sanchez-Martinez G, Torrentegi E, Montalvo Z, Lucia A, de la Villa P. Enhanced external counterpulsation and short-term recovery from high-intensity interval training. Int J Sports Physiol Perform. 2018;13(8):1100–1106. PubMed ID: 29466090 doi:10.1123/ijspp.2017-0792

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Borne R, Hausswirth C, Bieuzen F. Relationship between blood flow and performance recovery: a randomized, placebo-controlled study. Int J Sports Physiol Perform. 2017;12(2):152–160. PubMed ID: 27139812 doi:10.1123/ijspp.2015-0779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. Physiol Rev. 2008;88(1):287–332. PubMed ID: 18195089 doi:10.1152/physrev.00015.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Liu R, Liang Z-J, Liao X-X, et al. Enhanced external counterpulsation improves cerebral blood flow following cardiopulmonary resuscitation. Am J Emerg Med. 2013;31(12):1638–1645. PubMed ID: 24060327 doi:10.1016/j.ajem.2013.08.035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Valic Z, Buckwalter JB, Clifford PS. Muscle blood flow response to contraction: influence of venous pressure. J Appl Physiol. 2005;98(1):72–76. PubMed ID: 15377645 doi:10.1152/japplphysiol.00151.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Neric FB, Beam WC, Brown LE, Wiersma LD. Comparison of swim recovery and muscle stimulation on lactate removal after sprint swimming. J Strength Cond Res. 2009;23(9):2560–2567. PubMed ID: 19910818 doi:10.1519/JSC.0b013e3181bc1b7a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bangsbo J, Hellsten Y. Muscle blood flow and oxygen uptake in recovery from exercise. Acta Physiol Scand. 1998;162(3):305–312. PubMed ID: 9578376 doi:10.1046/j.1365-201X.1998.0331e.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Henriksson J, Knol M. A single bout of exercise is followed by a prolonged decrease in the interstitial glucose concentration in skeletal muscle. Acta Physiol Scand. 2005;185(4):313–320. PubMed ID: 16266372 doi:10.1111/j.1365-201X.2005.01498.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pascoe DD, Gladden LB. Muscle glycogen resynthesis after short term, high intensity exercise and resistance exercise. Sports Med. 1996;21(2):98–118. PubMed ID: 8775516 doi:10.2165/00007256-199621020-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Patterson SD, Bezodis NE, Glaister M, Pattison JR. The effect of ischemic preconditioning on repeated sprint cycling performance. Med Sci Sports Exerc. 2015;47(8):1652–1658. PubMed ID: 25412297 doi:10.1249/MSS.0000000000000576

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Libonati JR, Howell AK, Incanno NM, Pettee KK, Glassberg HL. Brief muscle hypoperfusion/hyperemia: an ergogenic aid? J Strength Cond Res. 2001;15(3):362–366. PubMed ID: 11710666

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Taylor T, West DJ, Howatson G, et al. The impact of neuromuscular electrical stimulation on recovery after intensive, muscle damaging, maximal speed training in professional team sports players. J Sci Med Sport. 2015;18(3):328–332. PubMed ID: 24785367 doi:10.1016/j.jsams.2014.04.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Russell M, Birch J, Love T, et al. The effects of a single whole-body cryotherapy exposure on physiological, performance, and perceptual responses of professional academy soccer players after repeated sprint exercise. J Strength Cond Res. 2017;31(2):415–421. PubMed ID: 27227791

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cannon JG, Fielding RA, Fiatarone MA, Orencole SF, Dinarello CA, Evans WJ. Increased interleukin 1 beta in human skeletal muscle after exercise. Am J Physiol. 1989;257(2 pt 2):R451–455. PubMed ID: 2669532

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Peake JM, Roberts LA, Figueiredo VC, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol. 2017;595(3):695–711. doi:10.1113/JP272881

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 65 65 57
Full Text Views 17 17 13
PDF Downloads 11 11 8