Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To determine if the mathematical model used to derive critical power could be used to identify the critical resistance (CR) for the deadlift; compare predicted and actual repetitions to failure at 50%, 60%, 70%, and 80% 1-repetition maximum (1RM); and compare the CR with the estimated sustainable resistance for 30 repetitions (ESR30). Methods: Twelve subjects completed 1RM testing for the deadlift followed by 4 visits to determine the number of repetitions to failure at 50%, 60%, 70%, and 80% 1RM. The CR was calculated as the slope of the line of the total work completed (repetitions × weight [in kilograms] × distance [in meters]) vs the total distance (in meters) the barbell traveled. The actual and predicted repetitions to failure were determined from the CR model and compared using paired-samples t tests and simple linear regression. The ESR30 was determined from the power-curve analysis and compared with the CR using paired-samples t tests and simple linear regression. Results: The weight and repetitions completed at CR were 56 (11) kg and 49 (14) repetitions. The actual repetitions to failure were less than predicted at 50% 1RM (P < .001) and 80% 1RM (P < .001) and greater at 60% 1RM (P = .004), but there was no difference at 70% 1RM (P = .084). The ESR30 (75 [14] kg) was greater (P < .001) than the CR. Conclusions: The total work-vs-distance relationship can be used to identify the CR for the deadlift, which reflected a sustainable resistance that may be useful in the design of resistance-based exercise programs.

The authors are with the University of Kentucky, Lexington, KY.

Dinyer (taylor.dinyer@uky.edu) is corresponding author.
  • 1.

    Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8:329–338. doi:10.1080/00140136508930810

  • 2.

    Moritani T, Nagata A, DeVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–350. PubMed ID: 7262059 doi:10.1080/00140138108924856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5:23–25. PubMed ID: 6698679 doi:10.1055/s-2008-1025875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wakayoshi K, Ikuta K, Yoshida T, et al. Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. Eur J Appl Physiol. 1992;64:153–157. doi:10.1007/BF00717953

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bergstrom HC, Housh TJ, Zuniga JM, et al. Differences among estimates of critical power and anaerobic work capacity derived from five mathematical models and the three-minute all-out test. J Strength Cond Res. 2014;28(3):592–600. PubMed ID: 24566607 doi:10.1519/JSC.0b013e31829b576d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bergstrom HC, Housh TJ, Cochrane-Snyman KC, et al. A model for identifying intensity zones above critical velocity. J Strength Cond Res. 2017;31(12):3260–3265. PubMed ID: 28248750 doi:10.1519/JSC.0000000000001769

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bull AJ, Housh TJ, Johnson GO, Perry SR. Effect of mathematical modeling on the estimation of critical power. Med Sci Sports Exerc. 2000;32(2):526–530. PubMed ID: 10694142 doi:10.1097/00005768-200002000-00040

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bull AJ, Housh TJ, Johnson GO, Rana SR. Physiological responses at five estimates of critical velocity. Eur J Appl Physiol. 2000;102:711–720. doi:10.1007/s00421-007-0649-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Gaesser GA, Carnevale TJ, Garfinkel A, Walter DO, Womack CJ. Estimation of critical power with nonlinear and linear models. Med Sci Sports Exerc. 1995;27(10):1430–1438. PubMed ID: 8531615 doi:10.1249/00005768-199510000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jenkins DG, Quigley BM. The influence of high-intensity exercise training on the Wlim-Tlim relationship. Med Sci Sports Med. 1993;25(2):275–282.

    • Search Google Scholar
    • Export Citation
  • 11.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265–1279. PubMed ID: 3191904 doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport. Int J Sports Physiol Perform. 2011;6:128–136. PubMed ID: 21487156 doi:10.1123/ijspp.6.1.128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24:35–71. PubMed ID: 8744246 doi:10.1249/00003677-199600240-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Poole DC, Ward SA, Whipp BJ. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol. 1990;59:421–429. doi:10.1007/BF02388623

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Morton RH. A 3-parameter critical power model. Ergonomics. 1996;39(4):611–619. PubMed ID: 8854981 doi:10.1080/00140139608964484

  • 16.

    Housh DJ, Housh TJ, Bauge SM. The accuracy of the critical power test for predicting time to exhaustion during cycle ergometry. Ergonomics. 1989;32(8):997–1004. PubMed ID: 2806229 doi:10.1080/00140138908966860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pepper ML, Housh TJ, Johnson GO. The accuracy of the critical velocity test for predicting time to exhaustion during treadmill running. Int J Sports Med. 1992;13:121–124. PubMed ID: 1555900 doi:10.1055/s-2007-1021242

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Housh TJ, Cramer JT, Bull AJ, Johnson GO, Housh DJ. The effect of mathematical modeling on critical velocity. Eur J Appl Physiol. 2001;84:469–475. PubMed ID: 11417437 doi:10.1007/s004210000375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Morton RH, Redstone MD, Laing D. The critical power and bench press: modeling 1RM and repetitions to failure. Int J Exerc Sci. 2014;7(2):152–160.

    • Search Google Scholar
    • Export Citation
  • 20.

    Haff GG, Triplett NT, eds. Essentials of Strength Training and Conditioning. Champaign, IL: Human Kinetics; 2016.

  • 21.

    Anderson T, Kearney JT. Effects of three resistance training programs on muscular strength and absolute and relative endurance. Res Q Exerc Sport. 1982;53(1):1–7. PubMed ID: 7079558 doi:10.1080/02701367.1982.10605218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Campos GER, Luecke TJ, Wendeln HK, et al. Muscular adaptations in responses to three different resistance-training regimens: specificity of repetitions maximum training zones. Eur J Appl Physiol. 2002;88:50–60. PubMed ID: 12436270 doi:10.1007/s00421-002-0681-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Shimano T, Kraemer WJ, Spiering BA. Relationship between the number of repetitions and selected percentages of one repetition maximum in free weight exercises in trained and untrained men. J Strength Cond Res. 2006;20(4):819–823. PubMed ID: 17194239

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 99 99 68
Full Text Views 17 17 15
PDF Downloads 11 11 10