Validity of the Velocomp PowerPod Compared With the Verve Cycling InfoCrank Power Meter

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To determine the validity of the Velocomp PowerPod power meter in comparison with the Verve Cycling InfoCrank power meter. Methods: This research involved 2 separate studies. In study 1, 12 recreational male road cyclists completed 7 maximal cycling efforts of a known duration (2 times 5 s and 15, 30, 60, 240, and 600 s). In study 2, 4 elite male road cyclists completed 13 outdoor cycling sessions. In both studies, power output of cyclists was continuously measured using both the PowerPod and InfoCrank power meters. Maximal mean power output was calculated for durations of 1, 5, 15, 30, 60, 240, and 600 seconds plus the average power output in study 2. Results: Power output determined by the PowerPod was almost perfectly correlated with the InfoCrank (r > .996; P < .001) in both studies. Using a rolling resistance previously reported, power output was similar between power meters in study 1 (P = .989), but not in study 2 (P = .045). Rolling resistance estimated by the PowerPod was higher than what has been previously reported; this might have occurred because of errors in the subjective device setup. This overestimation of rolling resistance increased the power output readings. Conclusion: Accuracy of rolling resistance seems to be very important in determining power output using the PowerPod. When using a rolling resistance based on previous literature, the PowerPod showed high validity when compared with the InfoCrank in a controlled field test (study 1) but less so in a dynamic environment (study 2).

The authors are with the Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Merkes (p.merkes@ecu.edu.au) is corresponding author.
  • 1.

    Bouillod A, Pinot J, Soto-Romero G, Bertucci W, Grappe F. Validity, sensitivity, reproducibility, and robustness of the PowerTap, Stages and Garmin Vector power meters in comparison with the SRM device. Int J Sports Physiol Perform. 2017;12(8):1023–1030. PubMed ID: 27967278 doi:10.1123/ijspp.2016-0436

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nimmerichter A, Schnitzer L, Prinz B, Simon D, Wirth K. Validity and reliability of the Garmin Vector power meter in laboratory and field cycling. Int J Sports Med. 2017;38(6):439–446. PubMed ID: 28460405 doi:10.1055/s-0043-101909

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Novak AR, Dascombe BJ. Agreement of power measures between Garmin Vector and SRM cycle power meters. Meas Phys Educ Exerc Sci. 2016;20(3):167–172. doi:10.1080/1091367X.2016.1191496

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bertucci W, Crequy S, Chiementin X. Validity and reliability of the G-Cog BMX powermeter. Int J Sports Med. 2013;34(6):538–543. PubMed ID: 23254482

  • 5.

    Bertucci W, Duc S, Villerius V, Pernin JN, Grappe F. Validity and reliability of the PowerTap mobile cycling powermeter when compared with the SRM device. Int J Sports Med. 2005;26(10):868–873. PubMed ID: 16320172 doi:10.1055/s-2005-837463

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Duc S, Villerius V, Bertucci W, Grappe F. Validity and reproducibility of the ErgomoPro power meter compared with the SRM and Powertap power meters. Int J Sports Physiol Perform. 2007;2(3):270–281. PubMed ID: 19168927 doi:10.1123/ijspp.2.3.270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Maier T, Schmid L, Müller B, Steiner T, Wehrlin JP. Accuracy of cycling power meters against a mathematical model of treadmill cycling. Int J Sports Med. 2017;38(6):456–461. PubMed ID: 28482367 doi:10.1055/s-0043-102945

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Abbiss CR, Quod MJ, Levin G, Martin DT, Laursen PB. Accuracy of the Velotron ergometer and SRM power meter. Int J Sports Med. 2009;30(2):107–112. PubMed ID: 19177315 doi:10.1055/s-0028-1103285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Gardner AS, Stephens S, Martin DT, Lawton E, Lee H, Jenkins D. Accuracy of SRM and power tap power monitoring systems for bicycling. Med Sci Sports Exerc. 2004;36(7):1252–1258. PubMed ID: 15235334 doi:10.1249/01.MSS.0000132380.21785.03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Quod MJ, Martin DT, Martin JC, Laursen PB. The power profile predicts road cycling MMP. Int J Sports Med. 2010;31(6):397–401. PubMed ID: 20301046 doi:10.1055/s-0030-1247528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    De Pauw K, Roelands B, Cheung SS, De Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Martin JC, Gardner AS, Barras M, Martin DT. Aerodynamic drag area of cyclists determined with field-based measures. Sportscience. 2006;10:68–69.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hopkins WG. A scale of magnitudes for effect statistics. 2002. http://www.sportsci.org/resource/stats/effectmag.html. Accessed March 6, 2017.

    • Export Citation
  • 14.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud. 2010;47(8):931–936. doi:10.1016/j.ijnurstu.2009.10.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bland JM, Altman DG. Comparing methods of measurement: why plotting difference against standard method is misleading. Lancet. 1995;346(8982):1085–1087. PubMed ID: 7564793 doi:10.1016/S0140-6736(95)91748-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR. Validation of a mathematical model for road cycling power. J Appl Biomech. 1998;14(3):276–291. PubMed ID: 28121252 doi:10.1123/jab.14.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Compton T. Tire rolling resistance. 2004. https://analyticcycling.com/ForcesTires_Page.html. Accessed August 20, 2018.

    • Export Citation
  • 18.

    Barry N, Burton D, Sheridan J, Thompson M, Brown NAT. Aerodynamic performance and riding posture in road cycling and triathlon. Proc Inst Mech Eng P J Sport Eng Technol. 2015;229(1):28–39. doi:10.1177/0954411914565828

    • Search Google Scholar
    • Export Citation
  • 19.

    García-López J, Rodríguez-Marroyo JA, Juneau CE, Peleteiro J, Martínez AC, Villa JG. Reference values and improvement of aerodynamic drag in professional cyclists. J Sports Sci. 2008;26(3):277–286. doi:10.1080/02640410701501697

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Barry N, Burton D, Sheridan J, Thompson M, Brown NAT. Aerodynamic drag interactions between cyclists in a team pursuit. Sports Eng. 2015;18(2):93–103. doi:10.1007/s12283-015-0172-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Underwood L, Schumacher J, Burette-Pommay J, Jermy M. Aerodynamic drag and biomechanical power of a track cyclist as a function of shoulder and torso angles. Sports Eng. 2011;14(2–4):147–154. doi:10.1007/s12283-011-0078-z

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Merkes PFJ, Menaspà P, Abbiss CR. Reducing aerodynamic drag by adopting a novel road-cycling sprint position. Int J Sports Physiol Perform. 2019;14(6):733–738. doi:10.1123/ijspp.2018-0560

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 52 52 50
Full Text Views 15 15 14
PDF Downloads 12 12 11