Acute Enhancement of Jump Performance, Muscle Strength, and Power in Resistance-Trained Men After Consumption of Caffeinated Chewing Gum

in International Journal of Sports Physiology and Performance
View More View Less
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To explore the acute effects of caffeinated chewing gum on vertical-jump performance, isokinetic knee-extension/flexion strength and power, barbell velocity in resistance exercise, and whole-body power. Methods: Nineteen resistance-trained men consumed, in randomized counterbalanced order, either caffeinated chewing gum (300 mg of caffeine) or placebo and completed exercise testing that included squat jump; countermovement jump; isokinetic knee extension and knee flexion at angular velocities of 60 and 180°·s−1; bench-press exercise with loads corresponding to 50%, 75%, and 90% of 1-repetition maximum (1RM); and an “all-out” rowing-ergometer test. Results: Compared with placebo, caffeinated chewing gum enhanced (all Ps < .05) (1) vertical-jump height in the squat jump (effect size [ES] = 0.21; +3.7%) and countermovement jump (ES = 0.27; +4.6%); (2) knee-extension peak torque (ES = 0.21; +3.6%) and average power (ES = 0.25; +4.5%) at 60°·s−1 and knee-extension average power (ES = 0.30; +5.2%) at 180°·s−1, and knee-flexion peak torque at 60°·s−1 (ES = 0.22; +4.1%) and 180°·s−1 (ES = 0.31; +5.9%); (3) barbell velocity at 50% of 1RM (ES = 0.30; +3.2%), 75% of 1RM (ES = 0.44; +5.7%), and 90% of 1RM (ES = 0.43; +9.1%); and (4) whole-body peak power on the rowing-ergometer test (ES = 0.41; +5.0%). Average power of the knee flexors did not change at either angular velocity with caffeine consumption. Conclusions: Caffeinated chewing gum with a dose of caffeine of 300 mg consumed 10 min preexercise may acutely enhance vertical-jump height, isokinetic strength and power of the lower-body musculature, barbell velocity in the bench-press exercise with moderate to high loads, and whole-body power.

Venier and Mikulic are with the Faculty of Kinesiology, University of Zagreb, Zagreb, Croatia. Grgic is with the Inst for Health & Sport (IHES), Victoria University, Melbourne, VIC, Australia.

Mikulic (pavle.mikulic@kif.hr) is corresponding author.
  • 1.

    Rivers WHR, Webber HN. The action of caffeine on the capacity for muscular work. J Physiol. 1907;36:3347. PubMed ID: 16992882 doi:10.1113/jphysiol.1907.sp001215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Wickham KA, Spriet LL. Administration of caffeine in alternate forms. Sports Med. 2018;48:7991. PubMed ID: 29368182 doi:10.1007/s40279-017-0848-2

  • 3.

    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31:785807. PubMed ID: 11583104 doi:10.2165/00007256-200131110-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. PubMed ID: 29527137 doi:10.1186/s12970-018-0216-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Grgic J, Pickering C. The effects of caffeine ingestion on isokinetic muscular strength: a meta-analysis. J Sci Med Sport. 2019;22:353360. PubMed ID: 30217692 doi:10.1016/j.jsams.2018.08.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Grgic J. Caffeine ingestion enhances Wingate performance: a meta-analysis. Eur J Sport Sci. 2018;18:219225. PubMed ID: 29087785 doi:10.1080/17461391.2017.1394371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Southward K, Rutherfurd-Markwick KJ, Ali A. Correction to: the effect of acute caffeine ingestion on endurance performance: a systematic review and meta-analysis. Sports Med. 2018;48:24252441. PubMed ID: 30094798 doi:10.1007/s40279-018-0967-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42:13751387. PubMed ID: 20019636 doi:10.1249/MSS.0b013e3181cabbd8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses [published online ahead of print March 29, 2019]. Br J Sports Med. doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Kamimori GH, Karyekar CS, Otterstetter R, et al. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm. 2002;234:159167. PubMed ID: 11839447 doi:10.1016/S0378-5173(01)00958-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ryan EJ, Kim CH, Muller MD, et al. Low-dose caffeine administered in chewing gum does not enhance cycling to exhaustion. J Strength Cond Res. 2012;26:844850. PubMed ID: 22293680 doi:10.1519/JSC.0b013e31822a5cd4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ryan EJ, Kim CH, Fickes EJ, et al. Caffeine gum and cycling performance: a timing study. J Strength Cond Res. 2013;27:259264. PubMed ID: 22476164 doi:10.1519/JSC.0b013e3182541d03

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lane SC, Hawley JA, Desbrow B, et al. Single and combined effects of beetroot juice and caffeine supplementation on cycling time trial performance. Appl Physiol Nutr Metab. 2014;39:10501057. PubMed ID: 25154895 doi:10.1139/apnm-2013-0336

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Oberlin-Brown KT, Siegel R, Kilding AE, Laursen PB. Oral presence of carbohydrate and caffeine in chewing gum: independent and combined effects on endurance cycling performance. Int J Sports Physiol Perfom. 2016;11:164171. doi:10.1123/ijspp.2015-0133

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci. 2015;33:10761083. PubMed ID: 25517202 doi:10.1080/02640414.2014.984752

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Paton CD, Lowe T, Irvine A. Caffeinated chewing gum increases repeated sprint performance and augments increases in testosterone in competitive cyclists. Eur J Appl Physiol. 2010;110:12431250. PubMed ID: 20737165 doi:10.1007/s00421-010-1620-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bellar D, Kamimori G, Judge L. Effects of low-dose caffeine supplementation on early morning performance in the standing shot put throw. Eur J Sports Sci. 2012;12:5761. doi:10.1080/17461391.2010.536585

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z. The influence of caffeine supplementation on resistance exercise: a review. Sports Med. 2019;49:1730. PubMed ID: 30298476 doi:10.1007/s40279-018-0997-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Grgic J, Mikulic P. Caffeine ingestion acutely enhances muscular strength and power but not muscular endurance in resistance-trained men. Eur J Sport Sci. 2017;17:10291036. PubMed ID: 28537195 doi:10.1080/17461391.2017.1330362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Moir GL. Three different methods of calculating vertical jump height from force platform data in men and women. Meas Phys Educ Exerc Sci. 2009;12:207218. doi:10.1080/10913670802349766

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Balsalobre-Fernández C, Marchante D, Baz-Valle E, Alonso-Molero I, Jiménez SL, Muñóz-López M. Analysis of wearable and smartphone-based technologies for the measurement of barbell velocity in different resistance training exercises. Front Physiol. 2017;8:649. doi:10.3389/fphys.2017.00649

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Metikos B, Mikulic P, Sarabon N, Markovic G. Peak power output test on a rowing ergometer: a methodological study. J Strength Cond Res. 2015;29:29192925. PubMed ID: 25785705 doi:10.1519/JSC.0000000000000944

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Diaz-Lara FJ, Del Coso J, García JM, Portillo LJ, Areces F, Abián-Vicén J. Caffeine improves muscular performance in elite Brazilian Jiu-Jitsu athletes. Eur J Sport Sci. 2016;16:10791086. PubMed ID: 26863885 doi:10.1080/17461391.2016.1143036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Saunders B, de Oliveira LF, da Silva RP, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27:12401247. PubMed ID: 27882605 doi:10.1111/sms.12793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ranchordas MK, King G, Russell M, Lynn A, Russell M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int J Sport Nutr Exerc Metab. 2018;28:629634. PubMed ID: 29584462 doi:10.1123/ijsnem.2017-0405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Pickering C, Kiely J. Are the current guidelines on caffeine use in sport optimal for everyone? Inter-individual variation in caffeine ergogenicity, and a move towards personalised sports nutrition. Sports Med. 2017;48:716. doi:10.1007/s40279-017-0776-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Tallis J, Yavuz HCM. The effects of low and moderate doses of caffeine supplementation on upper and lower body maximal voluntary concentric and eccentric muscle force. Appl Physiol Nutr Metab. 2018;43:274281. PubMed ID: 29065278 doi:10.1139/apnm-2017-0370

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mora-Rodríguez R, García Pallarés J, López-Samanes Á, Ortega JF, Fernández-Elías VE. Caffeine ingestion reverses the circadian rhythm effects on neuromuscular performance in highly resistance-trained men. PLoS ONE. 2012;7:e33807. doi:10.1371/journal.pone.0033807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Pallarés JG, Fernández-Elías VE, Ortega JF, Muñoz G, Muñoz-Guerra J, Mora-Rodríguez R. Neuromuscular responses to incremental caffeine doses: performance and side effects. Med Sci Sports Exerc. 2013;45:21842192. doi:10.1249/MSS.0b013e31829a6672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Del Coso J, Salinero JJ, González-Millán C, Abián-Vicén J, Pérez-González B. Dose response effects of a caffeine-containing energy drink on muscle performance: a repeated measures design. J Int Soc Sports Nutr. 2012;9:21. PubMed ID: 22569090 doi:10.1186/1550-2783-9-21

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Carr AJ, Gore CJ, Dawson B. Induced alkalosis and caffeine supplementation: effects on 2,000-m rowing performance. Int J Sport Nutr Exerc Metab. 2011;21:357364. PubMed ID: 21799214 doi:10.1123/ijsnem.21.5.357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Bond V, Gresham K, McRae J, Tearney RJ. Caffeine ingestion and isokinetic strength. Br J Sports Med. 1986;20:135137. PubMed ID: 3779343 doi:10.1136/bjsm.20.3.135

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Tallis J, Muhammad B, Islam M, Duncan MJ. Placebo effects of caffeine on maximal voluntary concentric force of the knee flexors and extensors. Muscle Nerve. 2016;54:479486. PubMed ID: 26823128 doi:10.1002/mus.25060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 655 655 72
Full Text Views 44 44 5
PDF Downloads 21 21 0