Slowing the Reconstitution of W′ in Recovery With Repeated Bouts of Maximal Exercise

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: This study examined the partial reconstitution of the work capacity above critical power (W′) following successive bouts of maximal exercise using a new repeated ramp test, against which the fit of an existing W′ balance (Wbal) prediction model was tested. Methods: Twenty active adults, consisting of trained cyclists (n = 9; age 43 [15] y, V˙O2max 61.9 [8.5] mL·kg−1·min−1) and untrained cyclists (n = 11; age 36 [15] y, V˙O2max 52.4 [5.8] mL·kg−1·min−1) performed 2 tests 2 to 4 d apart, consisting of 3 incremental ramps (20 W·min−1) to exhaustion interspersed with 2-min recoveries. Results: Intratrial differences between recoveries demonstrated significant reductions in the amount of W′ reconstituted for the group and both subsets (P < .05). The observed minimal detectable changes of 475 J (first recovery) and 368 J (second recovery) can be used to monitor changes in the rate of W′ reconstitution in individual trained cyclists. Intertrial relative reliability of W′ reconstitution was evaluated by intraclass correlation coefficients for the group (≥.859) and the trained (≥.940) and untrained (≥.768) subsets. Absolute reliability was evaluated with typical error (TE) and coefficient of variation (CV) for the group (TE ≤ 559 J, CV ≤ 9.2%), trained (TE ≤ 301 J, CV ≤ 4.7%), and untrained (TE ≤ 720 J, CV ≤ 12.4%). Conclusions: The reconstitution of W′ is subject to a fatiguing effect hitherto unaccounted for in Wbal prediction models. Furthermore, the Wbal model did not provide a good fit for the repeated ramp test, which itself proved to be a reliable test protocol.

Chorley, Bott, and Lamb are with the Dept of Sport and Exercise Sciences, University of Chester, Chester, United Kingdom. Marwood is with the School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.

Chorley (a.chorley@chester.ac.uk) is corresponding author.
  • 1.

    Monod H, Scherrer J. The work capacity of a synergic muscular group. Ergonomics. 1965;8(3):329–338. doi:10.1080/00140136508930810

  • 2.

    Wilkerson DP, Koppo K, Barstow TJ, Jones AM. Effect of prior multiple-sprint exercise on pulmonary O2 uptake kinetics following the onset of perimaximal exercise. J Appl Physiol. 2004;97(4):1227–1236. PubMed ID: 15145915 doi:10.1152/japplphysiol.01325.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Keir DA, Fontana FY, Robertson TC, et al. Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med Sci Sports Exerc. 2015;47(9):1932–1940. PubMed ID: 25606817 doi:10.1249/MSS.0000000000000613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics. 1988;31(9):1265–1279. PubMed ID: 3191904 doi:10.1080/00140138808966766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the “critical power” assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol. 2008;294(2):585–593. PubMed ID: 18056980 doi:10.1152/ajpregu.00731.2007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Moritani T, Nagata A, deVries HA, Muro M. Critical power as a measure of physical work capacity and anaerobic threshold. Ergonomics. 1981;24(5):339–350. PubMed ID: 7262059 doi:10.1080/00140138108924856

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ferguson C, Rossiter HB, Whipp BJ, Cathcart AJ, Murgatroyd SR, Ward SA. Effect of recovery duration from prior exhaustive exercise on the parameters of the power-duration relationship. J Appl Physiol. 2010;108(4):866–874. PubMed ID: 20093659 doi:10.1152/japplphysiol.91425.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vanhatalo A, Fulford J, DiMenna FJ, Jones AM. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol. 2010;95(4):528–540. PubMed ID: 20028850 doi:10.1113/expphysiol.2009.050500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Miura A, Endo M, Sato H, Sato H, Barstow TJ, Fukuba Y. Relationship between the curvature constant parameter of the power-duration curve and muscle cross-sectional area of the thigh for cycle ergometry in humans. Eur J Appl Physiol. 2002;87(3):238–244. PubMed ID: 12111284 doi:10.1007/s00421-002-0623-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Simpson LP, Jones AM, Skiba PF, Vanhatalo A, Wilkerson D. Influence of hypoxia on the power-duration relationship during high-intensity exercise. Int J Sports Med. 2015;36(2):113–119. PubMed ID: 25329429 doi:10.1055/s-0034-1389943

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB. Pulmonary O2 uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol. 2011;110(6):1598–1606. PubMed ID: 21415174 doi:10.1152/japplphysiol.01092.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chidnok W, Dimenna FJ, Bailey SJ, et al. Exercise tolerance in intermittent cycling: application of the critical power concept. Med Sci Sports Exerc. 2012;44(5):966–976. PubMed ID: 22033512 doi:10.1249/MSS.0b013e31823ea28a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Chidnok W, Fulford J, Bailey SJ, et al. Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the “critical power”. J Appl Physiol. 2013;115(2):243–250. PubMed ID: 23640601 doi:10.1152/japplphysiol.00334.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Skiba PF, Jackman S, Clarke D, Vanhatalo A, Jones AM. Effect of work and recovery durations on W′ reconstitution during intermittent exercise. Med Sci Sports Exerc. 2014;46(7):1433–1440. PubMed ID: 24492634 doi:10.1249/MSS.0000000000000226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc. 2012;44(8):1526–1532. PubMed ID: 22382171 doi:10.1249/MSS.0b013e3182517a80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Skiba PF, Clarke D, Vanhatalo A, Jones AM. Validation of a novel intermittent w′ model for cycling using field data. Int J Sports Physiol Perform. 2014;9(6):900–904. PubMed ID: 24509723 doi:10.1123/ijspp.2013-0471

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bartram JC, Thewlis D, Martin DT, Norton KI. Accuracy of W′ recovery kinetics in high performance cyclists—modeling intermittent work capacity. Int J Sports Physiol Perform. 2018;13(6):724–728. PubMed ID: 29035607 doi:10.1123/ijspp.2017-0034

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Fitton B, Symons D, Caddy O. Exploring existing physiological models for short intermittent exercise. Paper presented at: International Conference on Sports Engineering; October 2017. Jaipur, India.

    • Export Citation
  • 19.

    van der Vaart H, Murgatroyd SR, Rossiter HB, Chen C, Casaburi R, Porszasz J. Selecting constant work rates for endurance testing in COPD: the role of the power-duration relationship. COPD. 2014;11(3):267–276. PubMed ID: 24182350 doi:10.3109/15412555.2013.840572

    • Search Google Scholar
    • Export Citation
  • 20.

    Murgatroyd SR, Wylde LA, Cannon DT, Ward SA, Rossiter HB. A ‘ramp-sprint’ protocol to characterise indices of aerobic function and exercise intensity domains in a single laboratory test. Eur J Appl Physiol. 2014;114(9):1863–1874. PubMed ID: 24888425 doi:10.1007/s00421-014-2908-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc. 2006;38(11):1995–2003. PubMed ID: 17095935 doi:10.1249/01.mss.0000232024.06114.a6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Boone J, Bourgois J. The oxygen uptake response to incremental ramp exercise: methodogical and physiological issues. Sports Med. 2012;42(6):511–526. PubMed ID: 22571502 doi:10.2165/11599690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas-exchange kinetics. J Appl Physiol. 1987;62(5):2003–2012. PubMed ID: 3110126 doi:10.1152/jappl.1987.62.5.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95(5):1901–1907. PubMed ID: 12857763 doi:10.1152/japplphysiol.00024.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Chidnok W, DiMenna FJ, Fulford J, et al. Muscle metabolic responses during high-intensity intermittent exercise measured by (31)P-MRS: relationship to the critical power concept. Am J Physiol Regul Integr Comp Physiol. 2013;305(9):R1085–R1092. PubMed ID: 24068048 doi:10.1152/ajpregu.00406.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Dekerle J, Barstow TJ, Regan L, Carter H. The critical power concept in all-out isokinetic exercise. J Sci Med Sport. 2014;17(6):640–644. PubMed ID: 24183173 doi:10.1016/j.jsams.2013.09.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Clark IE, Murray SR, Pettitt RW. Alternative procedures for the three-minute all-out exercise test. J Strength Cond Res. 2013;27(8):2104–2112. PubMed ID: 23090321 doi:10.1519/JSC.0b013e3182785041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Constantini K, Sabapathy S, Cross TJ. A single-session testing protocol to determine critical power and W′. Eur J Appl Physiol. 2014;114(6):1153–1161. PubMed ID: 24563054 doi:10.1007/s00421-014-2827-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Broxterman RM, Skiba PF, Craig JC, Wilcox SL, Ade CJ, Barstow TJ. W′ expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W′. Physiol Rep. 2016;4(19):e12856. PubMed ID: 27688431 doi:10.14814/phy2.12856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Skiba PF, Fulford J, Clarke DC, Vanhatalo A, Jones AM. Intramuscular determinants of the ability to recover work capacity above critical power. Eur J Appl Physiol. 2015;115(4):703–713. PubMed ID: 25425258 doi:10.1007/s00421-014-3050-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 102 102 6
Full Text Views 5 5 0
PDF Downloads 2 2 0