Effects of Chronic Cold-Water Immersion in Elite Rugby Players

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Francisco Tavares
Search for other papers by Francisco Tavares in
Current site
Google Scholar
PubMed
Close
,
Martyn Beaven
Search for other papers by Martyn Beaven in
Current site
Google Scholar
PubMed
Close
,
Júlia Teles
Search for other papers by Júlia Teles in
Current site
Google Scholar
PubMed
Close
,
Dane Baker
Search for other papers by Dane Baker in
Current site
Google Scholar
PubMed
Close
,
Phil Healey
Search for other papers by Phil Healey in
Current site
Google Scholar
PubMed
Close
,
Tiaki B. Smith
Search for other papers by Tiaki B. Smith in
Current site
Google Scholar
PubMed
Close
, and
Matthew Driller
Search for other papers by Matthew Driller in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Although the acute effects of cold-water immersion (CWI) have been widely investigated, research analyzing the effects of CWI over a chronic period in highly trained athletes is scarce. The aim of this study was to investigate the effects of CWI during an intense 3-wk preseason phase in elite rugby athletes. Methods: A total of 23 elite male rugby union athletes were randomized to either CWI (10 min at 10°C, n = 10) or a passive recovery control (CON, n = 13) during 3 wk of high-volume training. Athletes were exposed to either CWI or CON after each training day (12 d in total). Running loads, conditioning, and gym sessions were kept the same between groups. Measures of countermovement jump, perceived muscle soreness, and wellness were obtained twice a week, and saliva samples for determining cortisol and interleukin-6 were collected once per week. Results: Although no significant differences were observed between CWI and CON for any measure, CWI resulted in lower fatigue markers throughout the study as demonstrated by the moderate effects on muscle soreness (d = 0.58–0.91) and interleukin-6 (d = −0.83) and the small effects (d = 0.23–0.38) on countermovement jump in comparison with CON. Conclusions: CWI may provide some beneficial effect by reducing fatigue and soreness during an intense 3-wk training phase in elite rugby athletes.

Tavares, Beaven, Smith, and Driller are with the Faculty of Health, Sport and Human Performance, University of Waikato, Hamilton, New Zealand. Tavares, Baker, Healey, and Smith are with Chiefs Super Rugby, Hamilton, New Zealand. Teles is with the Faculty of Human Kinetics & CIPER, University of Lisbon, Lisbon, Portugal. Driller is with High Performance Sport New Zealand, Auckland, New Zealand.

Tavares (Tavaresxico@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Tavares F, Healey P, Smith TB, Driller M. The usage and perceived effectiveness of different recovery modalities in amateur and elite Rugby athletes. Perform Enhanc Heal. 2017;5(4):142146. doi:10.1016/j.peh.2017.04.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Tavares F, Smith TB, Driller M. Fatigue and recovery in rugby: a review. Sports Med. 2017;47(8):15151530. PubMed ID: 28150163 doi:10.1007/s40279-017-0679-1

  • 3.

    Coutts AJ, Reaburn P, Piva TJ, Rowsell GJ. Monitoring for overreaching in rugby league players. Eur J Appl Physiol. 2007;99(3):313324. PubMed ID: 17219174 doi:10.1007/s00421-006-0345-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med. 2006;36(9):781796. PubMed ID: 16937953 doi:10.2165/00007256-200636090-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Halson SL, Bartram J, West N, et al. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014;46(8):16311639. PubMed ID: 24504431 doi:10.1249/MSS.0000000000000268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    White GE, Wells GD. Cold-water immersion and other forms of cryotherapy: physiological changes potentially affecting recovery from high-intensity exercise. Extrem Physiol Med. 2013;2(1):26. PubMed ID: 24004719 doi:10.1186/2046-7648-2-26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med. 2006;36(9):747765. doi:10.2165/00007256-200636090-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Garcia CA, da Mota GR, Marocolo M. Cold water immersion is acutely detrimental but increases performance post-12 h in rugby players. Int J Sports Med. 2016;37(8):619624. PubMed ID: 27136509 doi:10.1055/s-0035-1565200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Webb NP, Harris NK, Cronin JB, Walker C. The relative efficacy of three recovery modalities following professional rugby league matches. J Strength Cond Res. 2013;27(9):24492455. PubMed ID: 23238097 doi:10.1519/JSC.0b013e31827f5253

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Highton J, Twist C. Recovery strategies for rugby. In: Twist C, Worsfold P, eds. The Science of Rugby. New York, NY: Routledge; 2015:101116.

    • Search Google Scholar
    • Export Citation
  • 11.

    Roberts LA, Raastad T, Markworth JF, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):42854301. PubMed ID: 26174323 doi:10.1113/JP270570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Roberts LA, Nosaka K, Coombes JS, Peake JM. Cold water immersion enhances recovery of submaximal muscle function after resistance exercise. Am J Physiol Regul Integr Comp Physiol. 2014;307(8):9981008. PubMed ID: 25121612 doi:10.1152/ajpregu.00180.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Higgins TR, Heazlewood IT, Climstein M. A random control trial of contrast baths and ice baths for recovery during competition in U/20 rugby union. J Strength Cond Res. 2011;25(4):10461051. PubMed ID: 20661161 doi:10.1519/JSC.0b013e3181cc269f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McMaster DT, Gill N, Cronin J, McGuigan M. The development, retention and decay rates of strength and power in elite rugby union, rugby league and American football: a systematic review. Sports Med. 2013;43(5):367384. PubMed ID: 23529287 doi:10.1007/s40279-013-0031-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Tavares F, Healey P, Smith TB, Driller M. The effect of training load on neuromuscular performance, muscle soreness and wellness during an in-season non-competitive week in elite Rugby athletes [published online ahead of print June 8, 2017]. J Sport Med Phys Fitness. PubMed ID: 28597622 doi:10.23736/S0022-4707.17.07618-6

    • Search Google Scholar
    • Export Citation
  • 16.

    Driller M, Mackay K, Mills B, Tavares F. Tissue flossing on ankle range of motion, jump and sprint performance: a follow-up study. Phys Ther Sport. 2017;28:2933. PubMed ID: 28950149 doi:10.1016/j.ptsp.2017.08.081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tavares F, McMaster T, Healey P, Smith TB, Driller M. A novel method to reduce the impact of countermovement jump monitoring in professional rugby athletes. J Athl Enhanc. 2018;7(1). doi:10.4172/2324-9080.1000282

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG. Spreadsheets for analysis of controlled trials with adjustment for a predictor. Sport Sci. 2006;10:4650.

  • 20.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Leeder J, Gissane C, van Someren K, Gregson W, Howatson G. Cold water immersion and recovery from strenuous exercise: a meta-analysis. Br J Sports Med. 2012;46(4):233240. PubMed ID: 21947816 doi:10.1136/bjsports-2011-090061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McLean B, Coutts A, Kelly V, McGuigan M, Cormack S. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sport Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    MacIntyre DL, Reid WD, McKenzie DC. Delayed muscle soreness: the inflammatory response to muscle injury and its clinical implications. Sports Med. 1995;20(1):2440. doi:10.2165/00007256-199520010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc. 2000;32(2):317331. PubMed ID: 10694113 doi:10.1097/00005768-200002000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Anderson T, Haake S, Lane AR, Hackney AC. Changes in resting salivary testosterone, cortisol and interleukin-6 as biomarkers of overtraining. Balt J Sport Heal. 2016;101(2):27. PubMed ID: 29708232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Broatch JR, Petersen A, Bishop DJ. Postexercise cold water immersion benefits are not greater than the placebo effect. Med Sci Sports Exerc. 2014;46(11):21392147. PubMed ID: 24674975 doi:10.1249/MSS.0000000000000348

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Cunniffe B, Hore AJ, Whitcombe DM, Jones KP, Baker JS, Davies B. Time course of changes in immuneoendocrine markers following an international rugby game. Eur J Appl Physiol. 2010;108(1):113122. PubMed ID: 19756700 doi:10.1007/s00421-009-1200-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Stephens JM, Halson S, Miller J, Slater GJ, Askew CD. Cold-water immersion for athletic recovery: one size does not fit all. Int J Sports Physiol Perform. 2017;12(1):29. PubMed ID: 27294485 doi:10.1123/ijspp.2016-0095

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tavares F, Walker O, Healey P, Smith TB, Driller M. Practical applications of water immersion recovery modalities for team sports. Strength Cond J. 2018;40(4):4860. doi:10.1519/SSC.0000000000000380

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5694 2354 68
Full Text Views 149 50 4
PDF Downloads 147 59 4