Effects of a 6-Week Period of Polarized or Threshold Training on Performance and Fatigue in Elite Swimmers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To quantify the impact of a polarized distribution of training intensity on performance and fatigue in elite swimmers. Methods: Twenty-two elite junior swimmers (12 males, age = 17 [3] y, and 10 females, age = 17 [3] y) participated in a crossover intervention study over 28 wk involving 2- × 6-wk training periods separated by 6 wk. Swimmers were randomly assigned to a training group for the first period: polarized (81% in zone 1, blood lactate concentration, [La]b ≤ 2 mmol·L−1; 4% in zone 2, 2 mmol·L−1 < [La]b ≤ 4 mmol·L−1; and 15% in zone 3, [La]b > 4 mmol·L−1) or threshold (65%/25%/10%). Before and after each period, they performed a 100-m maximal swimming test to determine performance, maximal [La]b, and oxygen consumption and an incremental swimming test to determine speed corresponding to [La]b = 4 mmol·L−1 (V4 mmol·L−1). Self-reported indices of well-being were collected with a daily questionnaire. Results: Polarized training elicited small to moderately greater improvement than threshold training on 100-m performance (within-group change ± 90% confidence interval: 0.97% ± 1.02% vs 0.09% ± 0.94%, respectively) with less fatigue and better quality of recovery. There was no substantial gender effect. No clear differences were observed in physiological adaptations between groups. Conclusions: In elite junior swimmers, a 6-wk period of polarized training induced small improvements in 100-m time-trial performance and, in combination with less perceived fatigue, forms a viable option for coaches preparing such cohorts of swimmers for competition.

Pla, Aubry, and Hellard are with the Laboratory of Sport, Expertise and Performance (EA 7370), Research Dept, French Inst of Sport (INSEP), University of Paris Descartes, Paris, France. Pla is also with Research Dept, French Swimming Federation, Paris, France. Pla and Toussaint are with the Inst of Biomedical Research and Epidemiology of Sport, Paris, France. Le Meur is with AS Monaco Football Club, Monaco, France.

Pla (robinpla38@gmail.com) is corresponding author.
  • 1.

    Avalos M, Hellard P, Chatard JC. Modeling the training–performance relationship using a mixed model in elite swimmers. Med Sci Sports Exerc. 2003;35(5):838–846. PubMed ID: 12750595 doi:10.1249/01.MSS.0000065004.05033.42

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Hellard P, Scordia C, Avalos M, Mujika I, Pyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab. 2017;26:1–12. PubMed ID: 28651061 doi:10.1139/apnm-2017-0180

    • Search Google Scholar
    • Export Citation
  • 3.

    Mujika I, Chatard JC, Busso T, Geyssant A, Barale F, Lacoste L. Effects of training on performance in competitive swimming. Can J Appl Physiol. 1995;20(4):395–406. PubMed ID: 8563672 doi:10.1139/h95-031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barnier R. The training of an Olympic champion. Presentation at: FINA Swimming Coaches Golden Clinic. 2012. http://archives.fina.org/H2O/docs/development/gold_clinic_prog.pdf.

    • Export Citation
  • 5.

    Arroyo-Toledo JJ, Clement VJ, Gonzalez-Ravé JM. The effects of ten weeks block and reverse periodization training on swimming performance and body composition of moderately trained female swimmers. J Swim Res. 2013;21:1.

    • Search Google Scholar
    • Export Citation
  • 6.

    Nugent FJ, Comyns TM, Burrows E, Warrington GD. Effects of low-volume, high-intensity training on performance in competitive swimmers: a systematic review. J Strength Cond Res. 2017;31(3):837–847. PubMed ID: 27465628 doi:10.1519/JSC.0000000000001583

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Neal CM, Hunter AM, Brennan L, et al. Six weeks of a polarized training-intensity distribution leads to greater physiological and performance adaptations than a threshold model in trained cyclists. J Appl Physiol. 2013;114(4):461–471. PubMed ID: 23264537 doi:10.1152/japplphysiol.00652.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Muñoz I, Cejuela R, Seiler S, Larumbe E, Esteve-Lanao J. Training-intensity distribution during an ironman season: relationship with competition performance. Int J Sports Physiol Perform. 2014;9(2):332–339. PubMed ID: 23921084 doi:10.1123/ijspp.2012-0352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ingham SA, Carter H, Whyte GP, Doust JH. Physiological and performance effects of low- versus mixed-intensity rowing training. Med Sci Sports Exerc. 2008;40(3):579–584. PubMed ID: 18379224 doi:10.1249/MSS.0b013e31815ecc6a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Sandbakk Ø, Sandbakk SB, Ettema G, Welde B. Effects of intensity and duration in aerobic high-intensity interval training in highly trained junior cross-country skiers. J Strength Cond Res. 2013;27(7):1974–1980. PubMed ID: 23037620 doi:10.1519/JSC.0b013e3182752f08

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Tonnessen E, Svendsen IS, Ronnestadt BR, Hisdal J, Haugen TA, Seiler S. The annual training periodization of 8 world champions in orienteering. Int J Sports Physiol Perform. 2015;10(1):29–38. PubMed ID: 24896267 doi:10.1123/ijspp.2014-0005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mujika I. Olympic preparation of a world-class female triathlete. Int J Sports Physiol Perform. 2014;9(4):727–731. PubMed ID: 24088819 doi:10.1123/ijspp.2013-0245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stoggl T, Sperlich B. Polarized training has greater impact on key endurance variables than threshold, high intensity, or high volume training. Front Physiol. 2014;5:33. PubMed ID: 24550842 doi:10.3389/fphys.2014.00033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Helgerud J, Høydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):665–671. PubMed ID: 17414804 doi:10.1249/mss.0b013e3180304570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med. 2002;32(1):53–73. PubMed ID: 11772161 doi:10.2165/00007256-200232010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Olbrecht J, Madsen Ø, Mader A, Liesen H, Hollmann W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. Int J Sports Med. 1985;6(2):74–77. PubMed ID: 4008143 doi:10.1055/s-2008-1025816

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Laffite LP, Vilas-Boas JP, Demarle A, Silva J, Fernandes R, Billat VL. Changes in physiological and stroke parameters during a maximal 400-m free swimming test in elite swimmers. Can J Appl Physiol. 2004;29:17–31. PubMed ID: 15602082 doi:10.1139/h2004-055

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Noon MR, James RS, Clarke ND, Akubat I, Thake CD. Perceptions of well-being and physical performance in English elite youth footballers across a season. J Sports Sci. 2015;33(20):2106–2115. PubMed ID: 26383605 doi:10.1080/02640414.2015.1081393

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472–485. PubMed ID: 10188754 doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Cohen J. Statistical Power Analysis for Behavorial Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988:567.

  • 22.

    González-Boto R, Salguero A, Tuero C, González-Gallego J, Márquez S. Monitoring the effects of training load changes on stress and recovery in swimmers. J Physiol Biochem. 2008;64(1):19–26. doi:10.1007/BF03168231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Aubry A, Hausswirth C, Louis J, Coutts AJ, Le Meur Y. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):1769–1777. PubMed ID: 25134000 doi:10.1249/MSS.0000000000000301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Chatard JC, Atlaoui D, Pichot V, Gourné C, Duclos M, Guézennec YC. Training follow up by questionnaire fatigue, hormones and heart rate variability measurements. Sci Sports. 2003;18:302–304. doi:10.1016/j.scispo.2003.09.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Kenneally M, Casado A, Santos-Concejero J. The effect of periodisation and training intensity distribution on middle- and long-distance running performance: a systematic review. Int J Sports Physiol Perform. 2017;28:1–26. PubMed ID: 29182410 doi:10.1123/ijspp.2017-0327

    • Search Google Scholar
    • Export Citation
  • 26.

    Termin B, Pendergast DR. Training using the stroke frequency–velocity relationship to combine biomechanical and metabolic paradigms. J Swim Res. 2000;14:9–17.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC. Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc. 1996;28(2):251–258. PubMed ID: 8775162 doi:10.1097/00005768-199602000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Atlaoui D, Duclos M, Gouarne C, Lacoste L, Barale F, Chatard JC. 24-hr urinary catecholamine excretion, training and performance in elite swimmers. Int J Sports Med. 2006;27(4):314–321. PubMed ID: 16572375 doi:10.1055/s-2005-865669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Shea CH, Kohl RM. Specificity and variability of practice. Res Q Exerc Sport. 1990;61(2):169–177. PubMed ID: 2094928 doi:10.1080/02701367.1990.10608671

  • 30.

    Wakayoshi K, Yoshida T, Ikuta Y, Mutoh Y, Miyashita M. Adaptations to six months of aerobic swim training. Changes in velocity, stroke rate, stroke length and blood lactate. Int J Sports Med. 1993;14(7):368–372. PubMed ID: 8244602 doi:10.1055/s-2007-1021194

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 385 385 141
Full Text Views 23 23 5
PDF Downloads 18 18 3