Increased Rate of Heat Storage, and No Performance Benefits, With Caffeine Ingestion Before a 10-km Run in Hot, Humid Conditions

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: Although the effect of caffeine in thermoneutral or cool environmental conditions has generally shown performance benefits, its efficacy in hot, humid conditions is not as well known. The purpose of this study was to further examine the effect of caffeine ingestion on endurance running performance in the heat. Methods: Ten trained endurance runners (6 males; mean [SD] age = 26 [9] y, height = 176.7 [5.1] cm, and mass = 72.1 [8.7] kg) came to the lab for 4 visits. The first was a VO2max test to determine cardiorespiratory fitness; the final 3 visits were 10-km runs in an environmental chamber at 30.6°C and 50% relative humidity under different conditions: 3 mg·kg−1 body mass (low caffeine dosage), 6 mg·kg−1 (moderate caffeine dosage), and a placebo. Repeated-measures analyses of variance were used to determine the effect of condition on the 10-km time, heart rate, core temperature, rating of perceived exertion, and thermal sensation. Results: There was no difference in the 10-km time between the placebo (53.2 [8.0] min), 3-mg·kg−1 (53.4 [8.4]), and 6-mg·kg−1 (52.7 [8.2]) conditions (P = .575, ηp2=.060). There was not a main effect of average heart rate (P = .406, ηp2=.107), rating of perceived exertion (P = .151, ηp2=.189), or thermal sensation (P = .286, ηp2=.130). There was a significant interaction for core temperature (P = .025, ηp2=.170); the moderate-dosage caffeine condition showed a higher rate of rise in core temperature (0.26 [0.08] °C·km−1 vs 0.20 [0.06] and 0.19 [0.10] °C·km−1 in the low-caffeine and placebo conditions, respectively). Conclusion: The results support previous research showing a thermogenic effect of caffeine, as the moderate-dosage condition led to a greater rate of heat storage and no performance benefits.

The authors are with the Dept of Human Performance and Health Education, Western Michigan University, Kalamazoo, MI.

Hanson (njhanson@gmail.com) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Roelands LDe Pauw KMeeusen R. Neurophysiological effects of exercise in the heat. Scand J Med Sci Spor. 2015;25(suppl 1):6578. PubMed ID: 25943657 doi:10.1111/sms.12350

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Watson PHasegawa HRoelands BPiacentini MFLooverie RMeeusen R. Acute dopamine/noradrenaline reuptake inhibition enhances human exercise performance in warm, but not temperate conditions. J Physiol. 2005;565(pt 3):873883. PubMed ID: 15831540 doi:10.1113/jphysiol.2004.079202

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cordery PPeirce NMaughan RWatson P. Dopamine/noradrenaline reuptake inhibition in women improves endurance exercise performance in the heat. Scand J Med Sci Sports. 2017;27(11):12211230. PubMed ID: 27739188 doi:10.1111/sms.12753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Momaya AFawal MEstes R. Performance-enhancing substances in sports: a review of the literature. Sports Med. 2015;45(4):517531. PubMed ID: 25663250 doi:10.1007/s40279-015-0308-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Keisler BDArmsey TD. Caffeine as an ergogenic aid. Curr Sports Med Rep. 2006;5(4):215219. PubMed ID: 16822345 doi:10.1097/01.CSMR.0000306510.57644.a7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ellender LLinder MM. Sports pharmacology and ergogenic aids. Prim Care. 2005;32(1):277292. PubMed ID: 15831323 doi:10.1016/j.pop.2004.11.008

  • 7.

    Goldstein ERZiegenfuss TKalman Det al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. 2010;7(1):5. PubMed ID: 20205813 doi:10.1186/1550-2783-7-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Burke LM. Caffeine and sports performance. Appl Physiol Nutr Metab. 2008;33(6):13191334. PubMed ID: 19088794 doi:10.1139/H08-130

  • 9.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44(2):175184. PubMed ID: 25355191 doi:10.1007/s40279-014-0257-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ganio MSKlau JFCasa DJArmstrong LEMaresh CM. Effect of caffeine on sport-specific endurance performance: a systematic review. J Strength Cond Res. 2009;23(1):315324. PubMed ID: 19077738 doi:10.1519/JSC.0b013e31818b979a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cheuvront SNEly BRKenefick RWMichniak-Kohn BBRood JCSawka MN. No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):394401. PubMed ID: 19020291 doi:10.1152/ajpregu.90812.2008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Roelands LBuyse LPauwels FDelbeke FDeventer KMeeusen R. No effect of caffeine on exercise performance in high ambient temperature. Eur J Appl Physiol. 2011;111(12):30893095. PubMed ID: 21461761 doi:10.1007/s00421-011-1945-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ganio MSJohnson ECKlau JFet al. Effect of ambient temperature on caffeine ergogenicity during endurance exercise. Eur J Appl Physiol. 2011;111(6):11351146. PubMed ID: 21120518 doi:10.1007/s00421-010-1734-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pitchford NWFell JWLeveritt MDDesbrow BShing CM. Effect of caffeine on cycling time-trial performance in the heat. J Sci Med Sport. 2014;17(4):445449. PubMed ID: 23932933 doi:10.1016/j.jsams.2013.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Beaumont REJames LJ. Effect of a moderate caffeine dose on endurance cycle performance and thermoregulation during prolonged exercise in the heat. J Sci Med Sport. 2017;20(11):10241028. PubMed ID: 28420550 doi:10.1016/j.jsams.2017.03.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Smith A. Effects of caffeine on human behavior. Food Chem Toxicol. 2002;40(9):12431255. PubMed ID: 12204388 doi:10.1016/S0278-6915(02)00096-0

  • 17.

    Graham TSpriet L. Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol. 1985;78(3):867874. PubMed ID: 7775331 doi:10.1152/jappl.1995.78.3.867

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Faul FErdfelder EBuchner ALang AG. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods. 2009;41:11491160.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thompson WRGordon NFPescatello LS. ACSM’s Guidelines for Exercise Testing and Prescription. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009.

    • Search Google Scholar
    • Export Citation
  • 20.

    Borg GA. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):9298. PubMed ID: 5523831

  • 21.

    Toner MMDrolet LLPandolf KB. Perceptual and physiological responses during exercise in cool and cold water. Percept Mot Skills. 1986;62(1):211220. PubMed ID: 3960662 doi:10.2466/pms.1986.62.1.211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mauger ARSculthorpe N. A new VO2max protocol allowing self-pacing in maximal incremental exercise. Br J Sports Med. 2012;46(1):5963. PubMed ID: 21505226 doi:10.1136/bjsports-2011-090006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Hanson NJReid CRCornwell KMLee TLScheadler CM. Pacing strategy during the final stage of a self-paced VO2max (SPV) test does not affect maximal oxygen uptake. Eur J Appl Physiol. 2017;117(9):18071815. PubMed ID: 28584931 doi:10.1007/s00421-017-3656-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Scheadler CMDevor ST. VO2max measured with a self-selected work rate protocol on an automated treadmill. Med Sci Sports Exerc. 2015;47(10):21582165. PubMed ID: 25853386 doi:10.1249/MSS.0000000000000647

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Robergs RALandwehr R. The surprising history of the “HRmax =220-age” equation. J Exerc Physiol. 2002;5(2):110.

  • 26.

    Domitrovich JWCuddy JSRuby BC. Core-temperature sensor ingestion timing and measurement variability. J Athl Train. 2010;45(6):594600. PubMed ID: 21062183 doi:10.4085/1062-6050-45.6.594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hasegawa HMeeusen RSarre SDiltoer MPiacentini MFMichotte Y. Acute dopamine/norepinephrine reuptake inhibition increases brain and core temperature in rats. J Appl Physiol. 2005;99(4):13971401. PubMed ID: 15920099 doi:10.1152/japplphysiol.00435.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Roelands BMeeusen R. Caffeine, dopamine and thermoregulation. Eur J Appl Physiol. 2012;112(5):19791980. PubMed ID: 21874329 doi:10.1007/s00421-011-2127-5

  • 29.

    Roelands BWatson PCordery Pet al. A dopamine/noradrenaline reuptake inhibitor improves performance in the heat, but only at the maximum therapeutic dose. Scand J Med Sci Spor. 2012;22(5):e93e98. PubMed ID: 22845895 doi:10.1111/j.1600-0838.2012.01502.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    de Koning JJFoster CBakkum Aet al. Regulation of pacing strategy during athletic competition. PLoS ONE. 2011;6(1):e15863. PubMed ID: 21283744 doi:10.1371/journal.pone.0015863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Tucker RRauch LHarley YXNoakes TD. Impaired exercise performance in the heat is associated with an anticipatory reduction in skeletal muscle recruitment. Pflugers Arch. 2004;448(4):422430. PubMed ID: 15138825 doi:10.1007/s00424-004-1267-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Cole KJCostill DLStarling RDGoodpaster BHTrappe SWFink WJ. Effect of caffeine ingestion on perception of effort and subsequent work production. Int J Sport Nutr. 1996;6(1):1423. PubMed ID: 8653101 doi:10.1123/ijsn.6.1.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hadjicharalambous MGeorgiades EKilduff LPTurner ATsofliou FPitsiladis Y. Influence of caffeine on perception of effort, metabolism and exercise performance following a high-fat meal. J Sports Sci. 2006;24(8):875887. PubMed ID: 16815783 doi:10.1080/02640410500249399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Doherty MSmith PMHughes MGDavison RR. Caffeine lowers perceptual response and increases power output during high-intensity cycling. J Sports Sci. 2004;22(7):637643. PubMed ID: 15370494 doi:10.1080/02640410310001655741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Denadai BDenadai M. Effects of caffeine on time to exhaustion in exercise performed below and above the anaerobic threshold. Braz J Med Biol Res. 1998;31(4):581585. PubMed ID: 9698813 doi:10.1590/S0100-879X1998000400017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Faulkner JParfitt GEston R. The rating of perceived exertion during competitive running scales with time. Psychophysiology. 2008;45(6):977985. PubMed ID: 18801015 doi:10.1111/j.1469-8986.2008.00712.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Baden DAWarwick-Evans LLakomy J. Am I nearly there? The effect of anticipated running distance on perceived exertion and attentional focus. J Sport Exercise Psy. 2004;26(2):215231. doi:10.1123/jsep.26.2.215

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 62 62 15
Full Text Views 4 4 0
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar
Cited By