Association Between the Force–Velocity Profile and Performance Variables Obtained in Jumping and Sprinting in Elite Female Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To quantify the magnitude of the association between the same variables of the force–velocity (FV) profile and the performance variables (unloaded-squat-jump height and 20-m sprint time) obtained during jumping and sprinting testing and to determine which mechanical capacity (ie, maximum force [F0], maximum velocity [V0], or maximum power [Pmax]) presents the highest association with the performance variables. Methods: The FV profile of 19 elite female soccer players (age 23.4 [3.8] y, height 166.4 [5.6] cm, body mass 59.7 [4.7] kg) was determined during the jumping and sprinting tasks. The F0, V0, FV slope, Pmax, and FV imbalance (difference respect to the optimal FV profile in jumping and the decrease in the ratio of horizontal force production in sprinting) were determined for each task. Results: Very large correlations between both tasks were observed for Pmax (r = .75) and the performance variables (r = −.73), as well as moderate correlations for V0 (r = .49), while the F0 (r = −.14), the FV slope (r = −.09), and the FV imbalance (r = .07) were not significantly correlated between both tasks. The Pmax obtained during each specific task was the mechanical capacity most correlated with its performance variable (r = .84 in jumping and r = .99 in sprinting). Conclusions: The absence of significant correlations between some of the FV relationship parameters suggests that, for an individualized training prescription based on the FV profile, both jumping and sprinting testing procedures should be performed with elite female soccer players.

Marcote-Pequeño, Cuadrado-Peñafiel, and Gómez are with the Faculty of Physical Activity and Sport Sciences, Technical University of Madrid, Madrid, Spain. García-Ramos is with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain, and the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of Most Holy Conception, Concepción, Chile. González-Hernández and Jiménez-Reyes are with the Faculty of Sport, Catholic University of San Antonio, Murcia, Spain.

García-Ramos (amagr@ugr.es) is corresponding author.
  • 1.

    Silva J, Nassis G, Rebelo A. Strength training in soccer with a specific focus on highly trained players. Sports Med Open. 2015;1(1):17. PubMed ID: 26284158 doi:10.1186/s40798-015-0006-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    García-Ramos A, Haff GG, Feriche B, Jaric S. Effects of different conditioning programmes on the performance of high-velocity soccer-related tasks: systematic review and meta-analysis of controlled trials. Int J Sports Sci Coach. 2018;13(1):129–151. doi:10.1177/1747954117711096

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–631. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Stølen T, Chamari K, Castagna C, Wisløff U. Physiology of soccer: an update. Sports Med. 2005;35(6):501–536. PubMed ID: 15974635 doi:10.2165/00007256-200535060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vescovi JD. Sprint speed characteristics of high-level American female soccer players: Female Athletes in Motion (FAiM) study. J Sci Med Sport. 2012;15(5):474–478. PubMed ID: 22516691 doi:10.1016/j.jsams.2012.03.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ramírez-Campillo R, Vergara-Pedreros M, Henríquez-Olguín C, et al. Effects of plyometric training on maximal-intensity exercise and endurance in male and female soccer players. J Sports Sci. 2016;34(8):687–693. PubMed ID: 26197721 doi:10.1080/02640414.2015.1068439

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Chelly MS, Fathloun M, Cherif N, Ben Amar M, Tabka Z, Van Praagh E. Effects of a back squat training program on leg power, jump, and sprint performances in junior soccer players. J Strength Cond Res. 2009;23(8):2241–2249. PubMed ID: 19826302 doi:10.1519/JSC.0b013e3181b86c40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    de Hoyo M, Pozzo M, Sanudo B, et al. Effects of a 10-week in-season eccentric-overload training program on muscle injury prevention and performance in junior elite soccer players. Int J Sports Physiol Perform. 2015;10(1):46–52. PubMed ID: 24910951 doi:10.1123/ijspp.2013-0547

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Styles WJ, Matthews MJ, Comfort P. Effects of strength training on squat and sprint performance in soccer players. J Strength Cond Res. 2016;30(6):1534–1539. PubMed ID: 26473518 doi:10.1519/JSC.0000000000001243

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Markovic G, Dizdar D, Jukic I, Cardinale M. Reliability and factorial validity of squat and countermovement jump tests. J Strength Cond Res. 2004;18(3):551–555. PubMed ID: 15320660 doi:10.1519/1533-4287(2004)18<551:RAFVOS>2.0.CO;2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol. 2000;88(3):811–816. PubMed ID: 10710372 doi:10.1152/jappl.2000.88.3.811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Morin JB, Samozino P. Interpreting power–force–velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force–velocity profiling during jumping. Front Physiol. 2017;7:677. PubMed ID: 28119624 doi:10.3389/fphys.2016.00677

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    García-Ramos A, Feriche B, Pérez-Castilla A, Padial P, Jaric S. Assessment of leg muscles mechanical capacities: which jump, loading, and variable type provide the most reliable outcomes? Eur J Sport Sci. 2017;17(6):690–698. PubMed ID: 28338423 doi:10.1080/17461391.2017.1304999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jiménez-Reyes P, Samozino P, Cuadrado-Peñafiel V, Conceição F, González-Badillo JJ, Morin JB. Effect of countermovement on power–force–velocity profile. Eur J Appl Physiol. 2014;114(11):2281–2288. PubMed ID: 25048073 doi:10.1007/s00421-014-2947-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Romero-Franco N, Jiménez-Reyes P, Castaño-Zambudio A, et al. Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci. 2017;17(4):386–392. PubMed ID: 27806673 doi:10.1080/17461391.2016.1249031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jaric S. Force–velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36(9):699–704. PubMed ID: 25806588 doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Samozino P, Rejc E, Di Prampero P, Belli A, Morin J. Optimal force–velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313–322. PubMed ID: 21775909 doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin J. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505–510. PubMed ID: 24227123 doi:10.1055/s-0033-1354382

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. Muscle force–velocity relationships observed in four different functional tests. J Hum Kinet. 2017;56:39–49. PubMed ID: 28469742 doi:10.1515/hukin-2017-0021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR. Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. 2012;112(11):3921–3930. PubMed ID: 22422028 doi:10.1007/s00421-012-2379-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Contreras B, Vigotsky AD, Schoenfeld BJ, et al. Effects of a six-week hip thrust vs. front squat resistance training program on performance in adolescent males: a randomized controlled trial. J Strength Cond Res. 2017;31(4):999–1008. PubMed ID: 27253835 doi:10.1519/JSC.0000000000001510

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wisløff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–288. PubMed ID: 15155427 doi:10.1136/bjsm.2002.002071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Perez-Castilla A, McMahon JJ, Comfort P, Garcia-Ramos A. Assessment of loaded squat jump height with a free-weight barbell and Smith machine: comparison of the take-off velocity and flight time procedures [published online ahead of print July 31, 2017]. J Strength Cond Res. PubMed ID: 28777251 doi:10.1519/JSC.0000000000002166

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Samozino P, Morin JB, Hintzy F, Belli A. A simple method for measuring force, velocity and power output during squat jump. J Biomech. 2008;41(14):2940–2945. PubMed ID: 18789803 doi:10.1016/j.jbiomech.2008.07.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Giroux C, Rabita G, Chollet D, Guilhem G. What is the best method for assessing lower limb force–velocity relationship? Int J Sports Med. 2015;36(2):143–149. PubMed ID: 25259590 doi:10.1055/s-0034-1385886

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jimenez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force–velocity–power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):36–43. doi:10.1123/IJSPP.2015-0484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 30.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kunz M. Big count: 265 million playing football. FIFA Mag. 2007;(July):10–15. http://www.fifa.com/mm/document/fifafacts/bcoffsurv/emaga_9384_10704.pdf. Accessed June 20, 2018.

    • Search Google Scholar
    • Export Citation
  • 32.

    Emmonds S, Nicholson G, Beggs C, Jones B, Bissas A. Importance of physical qualities for speed and change of direction ability in elite female soccer players [published online ahead of print July 17, 2017]. J Strength Cond Res. PubMed ID: 28723816 doi:10.1519/JSC.0000000000002114

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nagahara R, Morin JB, Koido M. Impairment of sprint mechanical properties in an actual soccer match: a pilot study. Int J Sports Physiol Perform. 2016;11(7):893–898. PubMed ID: 26791405 doi:10.1123/ijspp.2015-0567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Murtagh C, Nulty C, Vanrenterghem J, et al. The neuromuscular determinants of unilateral jump performance in soccer players are direction-specific. Int J Sports Physiol Perform. 2018;13(5):604–611. PubMed ID: 29283696 doi:10.1123/ijspp.2017-0589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Vescovi JD, McGuigan MR. Relationships between sprinting, agility, and jump ability in female athletes. J Sports Sci. 2008;26(1):97–107. PubMed ID: 17852692 doi:10.1080/02640410701348644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 178 178 37
Full Text Views 24 24 9
PDF Downloads 12 12 2