Improvement of Lower-Body Resistance-Exercise Performance With Blood-Flow Restriction Following Acute Caffeine Intake

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine the effects of acute caffeine (CAF) intake on physical performance in 3 sets of unilateral knee extensions with blood-flow restriction. Methods: In a double-blind crossover design, 22 trained men ingested 6 mg·kg−1 of CAF or a placebo (PLA), 1 h prior to performing unilateral knee-extension exercise with blood-flow restriction until exhaustion (30% of 1 maximal repetition). Results: There was a significant difference in the number of repetitions between the CAF and PLA conditions in the first set (28.3 [5.3] vs 23.7 [3.2]; P = .005), second set (11.6 [3.1] vs 8.9 [2.9]; P = .03), and total repetitions performed across the 3 sets (44.5 [9.4] vs 35.0 [6.6]; P = .001). Blood lactate was also significantly different (P = .03) after exercise between the CAF (7.8 [1.1] mmol·L−1) and PLA (6.0 [0.9] mmol·L−1). In regard to pain perception, there was a difference between the CAF and PLA in the second (6.9 [1.5] vs 8.4 [1.4]; P = .04) and third sets (8.7 [0.4] vs 9.5 [0.6]; P = .01). No differences were found for perceived effort. Conclusion: Acute caffeine intake increases performance and blood lactate concentration and reduces perception of pain in unilateral knee-extension exercise with blood-flow restriction.

Souza and Polito are with the Research Group of Cardiovascular Response and Exercise, Londrina State University, Londrina, Brazil. Duncan is with the School of Life Sciences, Coventry University, Coventry, United Kingdom.

Polito (marcospolito@uel.br) is corresponding author.
  • 1.

    Garber CE, Blissmer B, Deschenes MR, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–1359. PubMed ID: 21694556 doi:10.1249/MSS.0b013e318213fefb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Lixandrão ME, Ugrinowitsch C, Berton R, et al. Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis. Sports Med. 2018;48:361–378. PubMed ID: 29043659 doi:10.1007/s40279-017-0795-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol. 2017;117:2125–2135. PubMed ID: 28776271 doi:10.1007/s00421-017-3690-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Pearson SJ, Hussain SR. A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Med. 2015;45:187–200. PubMed ID: 25249278 doi:10.1007/s40279-014-0264-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Poton R, Polito MD. Hemodynamic response to resistance exercise with and without blood flow restriction in healthy subjects. Clin Physiol Funct Imaging. 2016;36:231–236. PubMed ID: 25431280 doi:10.1111/cpf.12218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Shimizu R, Hotta K, Yamamoto S, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. Eur J Appl Physiol. 2016;116:749–757. PubMed ID: 26822582 doi:10.1007/s00421-016-3328-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Petróczi A, Naughton DP, Pearce G, Bailey R, Bloodworth A, McNamee M. Nutritional supplement use by elite young UK athletes: fallacies of advice regarding efficacy. J Int Soc Sports Nutr. 2008;5:22. PubMed ID: 19077317 doi:10.1186/1550-2783-5-22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. PubMed ID: 29527137 doi:10.1186/s12970-018-0216-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Polito MD, Souza DB, Casonatto J, Farinatti P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: a systematic review and meta-analysis. Sci Sports. 2016;31:119–128. doi:10.1016/j.scispo.2016.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Nehlig A, Daval JL, Debry G. Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res Brain Res Rev. 1992;17:139–170. PubMed ID: 1356551 doi:10.1016/0165-0173(92)90012-B

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Duncan MJ, Stanley M, Parkhouse N, Cook K, Smith M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur J Sport Sci. 2013;13:392–399. PubMed ID: 23834545 doi:10.1080/17461391.2011.635811

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sport. 2005;15:69–78. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M. Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve. 2011;43:839–844. PubMed ID: 21488053 doi:10.1002/mus.21995

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Allen DG, Orchard CH. Intracellular calcium concentration during hypoxia and metabolic inhibition in mammalian ventricular muscle. J Physiol. 1983;339:107–122. PubMed ID: 6887018 doi:10.1113/jphysiol.1983.sp014706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lagally KM, Robertson RJ. Construct validity of the OMNI resistance exercise scale. J Strength Cond Res. 2006;20:252–256. PubMed ID: 16686549 doi:10.1519/R-17224.1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bijur PE, Silver W, Gallagher EJ. Reliability of the visual analog scale for measurement of acute pain. Acad Emerg Med. 2001;8:1153–1157. PubMed ID: 11733293 doi:10.1111/j.1553-2712.2001.tb01132.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Seo DI, Kim E, Fahs CA, et al. Reliability of the one-repetition maximum test based on muscle group and gender. J Sports Sci Med. 2012;11:221–225. PubMed ID: 24149193

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Landrum RE. College students’ use of caffeine and its relationship to personality. Coll Student J. 1992;26:151–155.

  • 19.

    Lixandrão ME, Ugrinowitsch C, Laurentino G, et al. Effects of exercise intensity and occlusion pressure after 12 weeks of resistance training with blood-flow restriction. Eur J Appl Physiol. 2015;115:2471–2480. PubMed ID: 26323350 doi:10.1007/s00421-015-3253-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Davis JK, Green JM. Caffeine and anaerobic performance: ergogenic value and mechanisms of action. Sport Med. 2009;39:813–832. PubMed ID: 19757860 doi:10.2165/11317770-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Davis JM, Zhao Z, Stock HS, Mehl K, Buggy J, Hand G. Central nervous system effects of caffeine and adenosine on fatigue. Am J Physiol Regul Integr Comp Physiol. 2003;284:399–404. PubMed ID: 12399249 doi:10.1152/ajpregu.00386.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Tarnopolsky MA. Effect of caffeine on the neuromuscular system—potential as an ergogenic aid. Appl Physiol Nutr Metab. 2008;33:1284–1289. PubMed ID: 19088790 doi:10.1139/H08-121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pollak KA, Swenson JD, Vanhaitsma TA, et al. Exogenously applied muscle metabolites synergistically evoke sensations of muscle fatigue and pain in human subjects. Exp Physiol. 2014;99:368–380. PubMed ID: 24142455 doi:10.1113/expphysiol.2013.075812

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cole K, Costill D, Starling RD, Goodpaster BH, Trappe SW, Fink WJ. Effect of caffeine ingestion on perception of effort and subsequent work production. Int J Sport Nutr. 1996;6:14–23. PubMed ID: 8653101 doi:10.1123/ijsn.6.1.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lara B, Ruiz-Vicente D, Areces F, et al. Acute consumption of a caffeinated energy drink enhances aspects of performance in sprint swimmers. Br J Nutr. 2015;114:908–914. PubMed ID: 26279580 doi:10.1017/S0007114515002573

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Salinero JJ, Lara B, Abian-Vicen J, et al. The use of energy drinks in sport: perceived ergogenicity and side effects in male and female athletes. Br J Nutr. 2014;112:1494–1502. PubMed ID: 25212095 doi:10.1017/S0007114514002189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Saunders B, de Oliveira LF, da Silva RP, et al. Placebo in sports nutrition: a proof-of-principle study involving caffeine supplementation. Scand J Med Sci Sports. 2017;27:1240–1247. PubMed ID: 27882605 doi:10.1111/sms.12793

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol. 2000;88:2097–2106. PubMed ID: 10846023 doi:10.1152/jappl.2000.88.6.2097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Glaister M, Gissane C. Caffeine and physiological responses to submaximal exercise: a meta-analysis. Int J Sports Physiol Perform. 2018;13:402–411. PubMed ID: 28872376 doi:10.1123/ijspp.2017-0312

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Doherty M, Smith PM, Davison RCR, Hughes MG. Caffeine is ergogenic after supplementation of oral creatine monohydrate. Med Sci Sports Exerc. 2002;34:1785–1792. PubMed ID: 12439084 doi:10.1249/01.MSS.0000035365.66598.24

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 264 264 25
Full Text Views 12 12 1
PDF Downloads 9 9 0