Relationships Between Model-Predicted and Actual Match-Play Exercise-Intensity Performance in Professional Australian Footballers During a Preseason Training Macrocycle

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: To assess and compare the validity of internal and external Australian football (AF) training-load measures for predicting preseason variation of match-play exercise intensity (MEI sim/min) using a variable dose–response model. Methods: A total of 21 professional male AF players completed an 18-wk preseason macrocycle. Preseason internal training load was quntified using the session rating-of-perceived-exertion method (sRPE) and external load from satellite (as distance [Dist] and high-speed distance [HS Dist]) and accelerometer (Player Load [PL]) data. Using a training-impulse (TRIMPs) calculation, external load expressed in arbitrary units was represented as TRIMPsDist, TRIMPsHSDist, and TRIMPsPL. Preseason training load and MEI sim/min data were applied to a variable dose–response model, which provided estimates of MEI sim/min. Model estimates of MEI sim/min were correlated with actual measures from each match-play drill performed during the preseason macrocycle. Magnitude-based inferences (effect size [90% confidence interval]) were calculated to determine practical differences in the precision of MEI sim/min estimates using each of the internal- and external-load inputs. Results: Estimates of MEI sim/min demonstrated very large and large associations with actual MEI sim/min with models constructed from external and internal training inputs (r [90% confidence interval]; TRIMPsDist .73 [.72–.74], TRIMPsPL .72 [.71–.73], and sRPESkills .67 [.56–.78]). There were trivial differences in the precision of MEI sim/min estimates between models constructed from TRIMPsDist and TRIMPsPL and between internal input methods. Conclusions: Variable dose-response models from multiple training-load inputs can predict the within-individual variation of MEI sim/min across an entire preseason macrocycle. Models informed by external training inputs (TRIMPsDist and TRIMPsPL) exhibited predictive power comparable to those of sRPESkills models.

Graham is with Allan Scott Headquarters, Port Adelaide Football Club, Alberton, Australia. Graham, Parfitt, and Eston are with the Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, Australia. Cormack is with Australian Catholic University, Melbourne, Australia.

Graham (Sgraham@pafc.com.au) is corresponding author.
  • 1.

    Busso T. Variable dose-response relationship between exercise training and performance. Med Sci Sports Exerc. 2003;35:11881195. PubMed ID: 12840641 doi:10.1249/01.MSS.0000074465.13621.37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bannister EW, Calvert TW, Savage MV, Bach T. A systems model of training for athletic performance. J Sports Sci Med Exerc. 1975;7:5761.

    • Search Google Scholar
    • Export Citation
  • 3.

    Fitz-Clarke JR, Morton RH, Banister EW. Optimizing athletic performance by influence curves. J Appl Physiol. 1991;71:11511158. PubMed ID: 1757312 doi:10.1152/jappl.1991.71.3.1151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Sanjez AMJ, Galbes O, Fabre-Guery F, et al. Modelling training responses in elite female gymnasts and optimal strategies of overload training and taper. J Sports Sci. 2013;31:15101519. PubMed ID: 23656356 doi:10.1080/02640414.2013.786183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Wallace LK, Slattery KM, Coutts AJ. A comparison of methods for quantifying training: relationships between modelled and actual training responses. Eur J Appl Physiol. 2014;114:1120. PubMed ID: 24104194 doi:10.1007/s00421-013-2745-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mujika I, Busso T, Lacoste L, Barale F, Geyssant A, Chatard JC. Modeled responses to training and taper in competitive swimmers. Med Sci Sports Exerc. 1996;28:251258. PubMed ID: 8775162 doi:10.1097/00005768-199602000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Busso T, Hakkinen K, Parakinen A, Kavhanen H, Komi PV, Lacour JR. Hormonal adaptations and modelled responses in elite weightlifters during 6 weeks of training. Eur J Appl Physiol Occup Physiol. 1992;64:381386. PubMed ID: 1592066 doi:10.1007/BF00636228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Wood R, Hayter S, Rowbottom D, Stewart I. Applying a mathematical model to training adaptation in a distance runner. Eur J Appl Physiol. 2005;94:310316. PubMed ID: 15765236 doi:10.1007/s00421-005-1319-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Taha T, Thomas SG. Systems modelling of the relationship between training and performance. Sports Med. 2003;33:10611073. PubMed ID: 14599233 doi:10.2165/00007256-200333140-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Young W, Burge P, Russell A, Carlon T. Comparison of playing positions in elite Australian football: a case study of one club. J Aust Strength Cond. 2010;18:1113.

    • Search Google Scholar
    • Export Citation
  • 11.

    Castagna C, Impellizzeri F, Cecchini E. Effect of intermittent-endurance fitness on match performance in young male soccer players. J Strength Cond Res. 2009;23:19541959. PubMed ID: 19855318 doi:10.1519/JSC.0b013e3181b7f743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21:519528. PubMed ID: 12848386 doi:10.1080/0264041031000071182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Helgerud J, Engen L, Wisloff U, Hoff J. Aerobic endurance training improves soccer performance. Med Sci Sports Exerc. 2001;33:19251931. PubMed ID: 11689745 doi:10.1097/00005768-200111000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Mooney MM, Cormack SJ, Coutts AJ, Berry J, Young WB. The relationship between physical capacity and match performance in elite Australian Football: a mediation approach. J Sci Med Sport. 2011;14:447452. PubMed ID: 21530392 doi:10.1016/j.jsams.2011.03.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Busso T, Candau R, Lacour J. Fatigue and fitness modelled from the effects of training on performance. Eur J Appl Physiol Occup Physiol. 1994;69:5054. PubMed ID: 7957156 doi:10.1007/BF00867927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Boyd LJ, Ball K, Aughey RJ. The reliability of minimaxX accelerometers for measuring physical activity in Australian Football. Int J Sports Physiol Perform. 2011;6:311321. PubMed ID: 21911857 doi:10.1123/ijspp.6.3.311

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Graham S, Cormack S, Parfitt G, Eston R. Relationships between model estimates and actual match-performance indices in professional Australian Footballers during an in-season macrocycle. Int J Sports Physiol Perform. 2018;13(3):339346. PubMed ID: 28714739 doi:10.1123/ijspp.2017-0026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Augey RJ. Increased high-intensity activity in elite Australian football finals matches. Int J Sports Physiol Perform. 2011;6:367379. PubMed ID: 21911862 doi:10.1123/ijspp.6.3.367

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Sullivan C, Bilsborough JC, Cianciosi M, Hocking J, Cordy JT, Coutts A. Factors affecting match performance in professional Australian Football. Int J Sports Physiol Perform. 2014;9:561566. PubMed ID: 23981383 doi:10.1123/ijspp.2013-0183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Edwards S. High performance training and racing. In: Edwards S, ed. The Heart Rate Monitor Book. Sacramento, CA: Feet Fleet Press; 1993:113123.

    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30:11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Coutts A, Reaburn P, Murphy A, Pine ML, Impellizzeri FM. Validity of the session RPE method for determining training load in team sport athletes. J Sports Sci Med Exerc. 2003;6:525. doi:10.1016/S1440-2440(03)80285-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Busso T, Denis C, Bonnefoy R, Geyssant A, Lacour JR. Modeling of adaptations to physical training by using a recursive least squares algorithm. J Appl Physiol. 1997;82:16851693. PubMed ID: 9134920 doi:10.1152/jappl.1997.82.5.1685

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins W, Marshall S, Batterham A. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Chalencon S, Pichot V, Roche F, et al. Modeling of performance and ANS activity for predicting future response to training. Eur J Appl Physiol. 2015;115:589596. PubMed ID: 25359446 doi:10.1007/s00421-014-3035-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bourdon P, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12:21612170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Boyd L, Ball K, Aughey R. Quantifying external load in Australian Football matches and training using accelerometers. Int J Sports Physiol Perform. 2013;8:4451. PubMed ID: 22869637 doi:10.1123/ijspp.8.1.44

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pichot V. Relation between heart rate variability and training load in middle distance runners. Med Sci Sports Exerc. 2000;32:17291736. PubMed ID: 11039645 doi:10.1097/00005768-200010000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bucheit M. Monitoring training status with HR measures: do all roads lead to Rome? Front Phsyiol. 2014;27:73. PubMed ID: 24578692 doi:10.3389/fphys.2014.00073

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 207 177 4
Full Text Views 12 10 0
PDF Downloads 6 4 0