Internal and External Training Load: 15 Years On

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Franco M. Impellizzeri
Search for other papers by Franco M. Impellizzeri in
Current site
Google Scholar
PubMed
Close
,
Samuele M. Marcora
Search for other papers by Samuele M. Marcora in
Current site
Google Scholar
PubMed
Close
, and
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
Restricted access

Exercise is a stressor that induces various psychophysiological responses, which mediate cellular adaptations in many organ systems. To maximize this adaptive response, coaches and scientists need to control the stress applied to the athlete at the individual level. To achieve this, precise control and manipulation of the training load are required. In 2003, the authors introduced a theoretical framework to define and conceptualize the measurable constructs of the training process. They described training load as having 2 measurable components: internal and external load. The aim of this commentary is to extend, clarify, and refine both the theoretical framework and the definitions of internal and external training load to avoid misinterpretation of this concept.

Impellizzeri and Coutts are with the Faculty of Health, Human Performance Research Centre, University of Technology Sydney, Sydney, NSW, Australia. Marcora is with the School of Sport and Exercise Sciences, University of Kent, Chatham, United Kingdom, and the Dept of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy.

Impellizzeri (franco.impellizzeri@uts.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Impellizzeri FM. Monitoring training load in Italian football. Paper presented at: 8th Annual Congress of the European College of Sport Science; 2003. Salzburg, Austria.

    • Search Google Scholar
    • Export Citation
  • 2.

    Impellizzeri FM, Rampinini E, Marcora SM. Physiological assessment of aerobic training in soccer. J Sports Sci. 2005;23(6):583592. PubMed ID: 16195007 doi:10.1080/02640410400021278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jeffries AC, Wallace L, Coutts AJ. Quantifying training loads in contemporary dance. Int J Sports Physiol Perform. 2017;12(6):796802. PubMed ID: 27834552 doi:10.1123/ijspp.2016-0159

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Delaney JA, Duthie GM, Thornton HR, Pyne DB. Quantifying the relationship between internal and external work in team sports: development of a novel training efficiency index. Sci Med Football. 2018;2(2):149156. doi:10.1080/24733938.2018.1432885

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12(Suppl 2):2228. PubMed ID: 28253038 doi:10.1123/IJSPP.2016-0388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(Suppl 2):S139S147. doi:10.1007/s40279-014-0253-z

  • 8.

    Viru A, Viru M. Nature of training effects. In: Garrett W, Kirkendall D, eds. Exercise and Sport Science. Philadelphia, PA: Lippincott Williams & Williams; 2000:6795.

    • Search Google Scholar
    • Export Citation
  • 9.

    Booth FW, Thomason DB. Molecular and cellular adaptation of muscle in response to exercise: perspectives of various models. Physiol Rev. 1991;71(2):541585. PubMed ID: 2006222 doi:10.1152/physrev.1991.71.2.541

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Fan W, Evans RM. Exercise mimetics: impact on health and performance. Cell Metab. 2017;25(2):242247. PubMed ID: 27889389 doi:10.1016/j.cmet.2016.10.022

  • 11.

    Mujika I, Padilla S. Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 2000;30(2):7987. PubMed ID: 10966148 doi:10.2165/00007256-200030020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Coutts AJ, Crowcroft S, Kempton T. Developing athlete monitoring systems: theoretical basis and practical applications. In: Kellmann M, Beckmann J, eds. Sport, Recovery and Performance: Interdisciplinary Insights. Abingdon, UK: Routledge; 2018:1932.

    • Search Google Scholar
    • Export Citation
  • 13.

    Scott BR, Duthie GM, Thornton HR, Dascombe BJ. Training monitoring for resistance exercise: theory and applications. Sports Med. 2016;46(5):687698. PubMed ID: 26780346 doi:10.1007/s40279-015-0454-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Vellers HL, Kleeberger SR, Lightfoot JT. Inter-individual variation in adaptations to endurance and resistance exercise training: genetic approaches towards understanding a complex phenotype. Mamm Genome. 2018;29(1–2):4862. PubMed ID: 29356897 doi:10.1007/s00335-017-9732-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Smith DJ. A framework for understanding the training process leading to elite performance. Sports Med. 2003;33(15):11031126. PubMed ID: 14719980 doi:10.2165/00007256-200333150-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bouchard C, Rankinen T, Timmons JA. Genomics and genetics in the biology of adaptation to exercise. Compr Physiol. 2011;1(3):16031648. PubMed ID: 23733655 doi:10.1002/cphy.c100059

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sports Med. 2014;44(8):11131124. PubMed ID: 24807838 doi:10.1007/s40279-014-0197-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cardinale M, Varley MC. Wearable training-monitoring technology: applications, challenges, and opportunities. Int J Sports Physiol Perform. 2017;12(Suppl 2):S255S262. PubMed ID: 27834559 doi:10.1123/ijspp.2016-0423

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sports Med. 2013;43(10):927954. PubMed ID: 23832851 doi:10.1007/s40279-013-0066-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kyrolainen H, Avela J, Komi PV. Changes in muscle activity with increasing running speed. J Sports Sci. 2005;23(10):11011109. PubMed ID: 16194986 doi:10.1080/02640410400021575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Meyer T, Gabriel HH, Kindermann W. Is determination of exercise intensities as percentages of VO2max or HRmax adequate? Med Sci Sports Exerc. 1999;31(9):13421345. PubMed ID: 10487378 doi:10.1097/00005768-199909000-00017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Vollaard NB, Constantin-Teodosiu D, Fredriksson K, et al. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance. J Appl Physiol. 2009;106(5):14791486. doi:10.1152/japplphysiol.91453.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Marcora SM, Bosio A, de Morree HM. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol Regul Integr Comp Physiol. 2008;294(3):R874R883. PubMed ID: 18184760 doi:10.1152/ajpregu.00678.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol. 2009;106(3):857864. doi:10.1152/japplphysiol.91324.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 23841 8006 608
Full Text Views 1161 389 68
PDF Downloads 1403 614 93