Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The classical work by Robert C. Hickson showed in 1980 that the addition of a resistance-training protocol to a predominantly aerobic program could lead to impaired leg-strength adaptations in comparison with a resistance-only training regimen. This interference phenomenon was later highlighted in many reports, including a meta-analysis. However, it seems that the interference effect has not been consistently reported, probably because of the complex interactions between training variables and methodological issues. On the other side of the medal, Dr Hickson et al subsequently (1986) reported that a strength-training mesocycle could be beneficial for endurance performance in running and cycling. In recent meta-analyses and review articles, it was demonstrated that such a training strategy could improve middle- and long-distance performance in many disciplines (running, cycling, cross-country skiing, and swimming). Notably, it appears that improvements in the energy cost of locomotion could be associated with these performance enhancements. Despite these benefits, it was also reported that strength training could represent a detrimental stimulus for endurance performance if an inappropriate training plan has been prepared. Taken together, these observations suggest that coaches and athletes should be careful when concurrent training seems imperative to meet the complex physiological requirements of their sport. This brief review presents a practical appraisal of concurrent training for sports performance. In addition, recommendations are provided so that practitioners can adapt their interventions based on the training objectives.

Berryman is with the Dept of Sports Studies, Bishop’s University, Sherbrooke, QC, Canada, and the National Inst of Sport of Québec, Montréal, QC, Canada. Mujika is with the Dept of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Leioa, Basque Country, Spain, and the Exercise Science Laboratory, School of Kinesiology, Faculty of Medicine, Finis Terrae University, Santiago, Chile. Bosquet is with the Kinesiology Dept, University of Montréal, Montréal, QC, Canada, and the Faculty of Sport Sciences, MOVE Laboratory (EA 3813), University of Poitiers, Poitiers, France.

Berryman (nicolas.berryman@ubishops.ca) is corresponding author.
  • 1.

    van der Zwaard S, van der Laarse WJ, Weide G, et al. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J. 2018;32(4):2110–2123. PubMed ID: 29217665 doi:10.1096/fj.201700827R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Nader GA. Concurrent strength and endurance training: from molecules to man. Med Sci Sports Exerc. 2006;38(11):1965–1970. PubMed ID: 17095931 doi:10.1249/01.mss.0000233795.39282.33

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Hickson RC. Interference of strength development by simultaneously training for strength and endurance. Eur J Appl Physiol Occup Physiol. 1980;45(2–3):255–263. PubMed ID: 7193134 doi:10.1007/BF00421333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bell G, Syrotuik D, Socha T, Maclean I, Quinney HA. Effect of strength training and concurrent strength and endurance training on strength, testosterone, and cortisol. J Strength Cond Res. 1997;11(1):57–64.

    • Search Google Scholar
    • Export Citation
  • 5.

    Docherty D, Sporer B. A proposed model for examining the interference phenomenon between concurrent aerobic and strength training. Sports Med. 2000;30(6):385–394. PubMed ID: 11132121 doi:10.2165/00007256-200030060-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Wilson JM, Marin PJ, Rhea MR, Wilson SM, Loenneke JP, Anderson JC. Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises. J Strength Cond Res. 2012;26(8):2293–2307. PubMed ID: 22002517 doi:10.1519/JSC.0b013e31823a3e2d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Leveritt M, Abernethy PJ, Barry BK, Logan PA. Concurrent strength and endurance training. A review. Sports Med. 1999;28(6):413–427. PubMed ID: 10623984 doi:10.2165/00007256-199928060-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37(9):737–763. PubMed ID: 17722947 doi:10.2165/00007256-200737090-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Fyfe JJ, Bishop DJ, Stepto NK. Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables. Sports Med. 2014;44(6):743–762. PubMed ID: 24728927 doi:10.1007/s40279-014-0162-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hughes DC, Ellefsen S, Baar K. Adaptations to endurance and strength training. Cold Spring Harb Perspect Med. 2018;8(6):pii a029769. PubMed ID: 28490537 doi:10.1101/cshperspect.a029769

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Coffey VG, Hawley JA. Concurrent exercise training: do opposites distract? J Physiol. 2017;595(9):2883–2896. PubMed ID: 27506998 doi:10.1113/JP272270

  • 12.

    Fyfe JJ, Loenneke JP. Interpreting adaptation to concurrent compared with single-mode exercise training: some methodological considerations. Sports Med. 2018;48(2):289–297. PubMed ID: 29127601 doi:10.1007/s40279-017-0812-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise does not compromise muscle hypertrophy response to short-term resistance training. J Appl Physiol. 2013;114(1):81–89. PubMed ID: 23104700 doi:10.1152/japplphysiol.01013.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Konopka AR, Harber MP. Skeletal muscle hypertrophy after aerobic exercise training. Exerc Sport Sci Rev. 2014;42(2):53–61. PubMed ID: 24508740 doi:10.1249/JES.0000000000000007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Murach KA, Bagley JR. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports Med. 2016;46(8):1029–1039. PubMed ID: 26932769 doi:10.1007/s40279-016-0496-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sloth M, Sloth D, Overgaard K, Dalgas U. Effects of sprint interval training on VO2max and aerobic exercise performance: a systematic review and meta-analysis. Scand J Med Sci Sports. 2013;23(6):341–352. PubMed ID: 23889316 doi:10.1111/sms.12092

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cantrell GS, Schilling BK, Paquette MR, Murlasits Z. Maximal strength, power, and aerobic endurance adaptations to concurrent strength and sprint interval training. Eur J Appl Physiol. 2014;114(4):763–771. PubMed ID: 24390691 doi:10.1007/s00421-013-2811-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Sabag A, Najafi A, Michael S, Esgin T, Halaki M, Hackett D. The compatibility of concurrent high intensity interval training and resistance training for muscular strength and hypertrophy: a systematic review and meta-analysis. J Sports Sci. 2018;36(21):2472–2483. PubMed ID: 29658408 doi:10.1080/02640414.2018.1464636

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sporer BC, Wenger HA. Effects of aerobic exercise on strength performance following various periods of recovery. J Strength Cond Res. 2003;17(4):638–644. PubMed ID: 14636098

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lundberg TR, Fernandez-Gonzalo R, Gustafsson T, Tesch PA. Aerobic exercise alters skeletal muscle molecular responses to resistance exercise. Med Sci Sports Exerc. 2012;44(9):1680–1688. PubMed ID: 22460475 doi:10.1249/MSS.0b013e318256fbe8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Eddens L, van Someren K, Howatson G. The role of intra-session exercise sequence in the interference effect: a systematic review with meta-analysis. Sports Med. 2018;48(1):177–188. PubMed ID: 28917030 doi:10.1007/s40279-017-0784-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hickson RC, Dvorak BA, Gorostiaga EM, Kurowski TT, Foster C. Potential for strength and endurance training to amplify endurance performance. J Appl Physiol. 1988;65(5):2285–2290. PubMed ID: 3209573 doi:10.1152/jappl.1988.65.5.2285

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    di Prampero PE, Atchou G, Bruckner JC, Moia C. The energetics of endurance running. Eur J Appl Physiol Occup Physiol. 1986;55(3):259–266. PubMed ID: 3732253 doi:10.1007/BF02343797

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Foster C, Lucia A. Running economy: the forgotten factor in elite performance. Sports Med. 2007;37(4–5):316–319. PubMed ID: 17465597 doi:10.2165/00007256-200737040-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Larsen HB. Kenyan dominance in distance running. Comp Biochem Physiol A Mol Integr Physiol. 2003;136(1):161–170. PubMed ID: 14527638 doi:10.1016/S1095-6433(03)00227-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Jones AM. The physiology of the world record holder for the women’s marathon. Int J Sports Sci Coaching. 2006;1(2):101–116. doi:10.1260/174795406777641258

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Paavolainen L, Hakkinen K, Hamalainen I, Nummela A, Rusko H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999;86(5):1527–1533. PubMed ID: 10233114 doi:10.1152/jappl.1999.86.5.1527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Berryman N, Maurel DB, Bosquet L. Effect of plyometric vs dynamic weight training on the energy cost of running. J Strength Cond Res. 2010;24(7):1818–1825. PubMed ID: 20543734 doi:10.1519/JSC.0b013e3181def1f5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Storen O, Helgerud J, Stoa EM, Hoff J. Maximal strength training improves running economy in distance runners. Med Sci Sports Exerc. 2008;40(6):1087–1092. PubMed ID: 18460997 doi:10.1249/MSS.0b013e318168da2f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Bonacci J, Chapman A, Blanch P, Vicenzino B. Neuromuscular adaptations to training, injury and passive interventions: implications for running economy. Sports Med. 2009;39(11):903–921. PubMed ID: 19827859 doi:10.2165/11317850-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Berryman N, Mujika I, Arvisais D, Roubeix M, Binet C, Bosquet L. Strength training for middle- and long-distance performance: a meta-analysis. Int J Sports Physiol Perform. 2018;13(1):57–63. PubMed ID: 28459360 doi:10.1123/ijspp.2017-0032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Denadai BS, de Aguiar RA, de Lima LC, Greco CC, Caputo F. Explosive training and heavy weight training are effective for improving running economy in endurance athletes: a systematic review and meta-analysis. Sports Med. 2017;47(3):545–554. PubMed ID: 27497600 doi:10.1007/s40279-016-0604-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Fletcher JR, MacIntosh BR. Running economy from a muscle energetics perspective. Front Physiol. 2017;8:433. PubMed ID: 28690549 doi:10.3389/fphys.2017.00433

  • 34.

    Denadai BS, Greco CC. Resistance training and exercise tolerance during high-intensity exercise: moving beyond just running economy and muscle strength. J Appl Physiol. 2018;124(2):526–528. PubMed ID: 28982948 doi:10.1152/japplphysiol.00800.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Beattie K, Kenny IC, Lyons M, Carson BP. The effect of strength training on performance in endurance athletes. Sports Med. 2014;44(6):845–865. PubMed ID: 24532151 doi:10.1007/s40279-014-0157-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bazyler CD, Abbott HA, Bellon CR, Taber CB, Stone MH. Strength training for endurance athletes: theory to practice. Strength Cond J. 2015;37(2):1–12. doi:10.1519/SSC.0000000000000131

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Doma K, Deakin GB, Bentley DJ. Implications of impaired endurance performance following single bouts of resistance training: an alternate concurrent training perspective. Sports Med. 2017;47(11):2187–2200. PubMed ID: 28702901 doi:10.1007/s40279-017-0758-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Palmer CD, Sleivert GG. Running economy is impaired following a single bout of resistance exercise. J Sci Med Sport. 2001;4(4):447–459. PubMed ID: 11905938 doi:10.1016/S1440-2440(01)80053-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Doma K, Deakin GB. The effects of strength training and endurance training order on running economy and performance. Appl Physiol Nutr Metab. 2013;38(6):651–656. PubMed ID: 23724883 doi:10.1139/apnm-2012-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Murlasits Z, Kneffel Z, Thalib L. The physiological effects of concurrent strength and endurance training sequence: a systematic review and meta-analysis. J Sports Sci. 2018;36(11):1212–1219. PubMed ID: 28783467 doi:10.1080/02640414.2017.1364405

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Chtara M, Chamari K, Chaouachi M, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med. 2005;39(8):555–560.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 913 913 176
Full Text Views 65 65 3
PDF Downloads 48 48 3