Improved Performance in National-Level Runners With Increased Training Load at 1600 and 1800 m

Click name to view affiliation

Avish P. Sharma
Search for other papers by Avish P. Sharma in
Current site
Google Scholar
PubMed
Close
,
Philo U. Saunders
Search for other papers by Philo U. Saunders in
Current site
Google Scholar
PubMed
Close
,
Laura A. Garvican-Lewis
Search for other papers by Laura A. Garvican-Lewis in
Current site
Google Scholar
PubMed
Close
,
Brad Clark
Search for other papers by Brad Clark in
Current site
Google Scholar
PubMed
Close
,
Marijke Welvaert
Search for other papers by Marijke Welvaert in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Gore
Search for other papers by Christopher J. Gore in
Current site
Google Scholar
PubMed
Close
, and
Kevin G. Thompson
Search for other papers by Kevin G. Thompson in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine the effect of altitude training at 1600 and 1800 m on sea-level (SL) performance in national-level runners. Methods: After 3 wk of SL training, 24 runners completed a 3-wk sojourn at 1600 m (ALT1600, n = 8), 1800 m (ALT1800, n = 9), or SL (CON, n = 7), followed by up to 11 wk of SL racing. Race performance was measured at SL during the lead-in period and repeatedly postintervention. Training volume (in kilometers) and load (session rating of perceived exertion) were calculated for all sessions. Hemoglobin mass was measured via CO rebreathing. Between-groups differences were evaluated using effect sizes (Hedges g). Results: Performance improved in both ALT1600 (mean [SD] 1.5% [0.9%]) and ALT1800 (1.6% [1.3%]) compared with CON (0.4% [1.7%]); g = 0.83 (90% confidence limits −0.10, 1.66) and 0.81 (−0.09, 1.62), respectively. Season-best performances occurred 5 to 71 d postaltitude in ALT1600/1800. There were large increases in training load from lead-in to intervention in ALT1600 (48% [32%]) and ALT1800 (60% [31%]) compared with CON (18% [20%]); g = 1.24 (0.24, 2.08) and 1.69 (0.65, 2.55), respectively. Hemoglobin mass increased in ALT1600 and ALT1800 (∼4%) but not CON. Conclusions: Larger improvements in performance after altitude training may be due to the greater overall load of training in hypoxia compared with normoxia, combined with a hypoxia-mediated increase in hemoglobin mass. A wide time frame for peak performances suggests that the optimal window to race postaltitude is individual, and factors other than altitude exposure per se may be important.

Sharma, Saunders, Garvican-Lewis, and Gore are with the Discipline of Physiology, and Welvaert, Innovation, Research and Development, Australian Inst of Sport, Bruce, ACT, Australia. Sharma, Saunders, Clark, Welvaert, Gore, and Thompson are with the Research Inst for Sport and Exercise, University of Canberra, Bruce, ACT, Australia. Garvican-Lewis is with the Mary McKillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Thompson is with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia.

Sharma (avishsharma@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Saunders PU, Pyne DB, Gore CJ. Endurance training at altitude. High Alt Med Biol. 2009;10(2):135148. PubMed ID: 19519223 doi:10.1089/ham.2008.1092

  • 2.

    Baumann I, Bonov P, Daniels J, Lange G. NSA Round table: high altitude training symposium. New Stud Athlet. 1994;9(2):2335.

  • 3.

    Wilber RL, Stray-Gundersen J, Levine BD. Effect of hypoxic“ dose” on physiological responses and sea-level performance. Med Sci Sports Exerc. 2007;39(9):15901599. PubMed ID: 17805093 doi:10.1249/mss.0b013e3180de49bd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chapman RF, Karlsen T, Resaland GK, et al. Defining the “dose” of altitude training: how high to live for optimal sea level performance enhancement. J Appl Physiol. 2014;116(6):595603. PubMed ID: 24157530 doi:10.1152/japplphysiol.00634.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea-level performance. J Appl Physiol. 2014b;116(7):837843. doi:10.1152/japplphysiol.00663.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Garvican-Lewis LA, Sharpe K, Gore CJ. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121(1):352355. PubMed ID: 26917695 doi:10.1152/japplphysiol.00579.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Stray-Gundersen J, Chapman RF, Levine BD. “Living high-training low” altitude training improves sea level performance in male and female elite runners. J Appl Physiol. 2001;91(3):11131120. PubMed ID: 11509506 doi:10.1152/jappl.2001.91.3.1113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bonne TC, Lundby C, Jørgensen S, et al. “Live High-Train High” increases hemoglobin mass in Olympic swimmers. Eur J Appl Physiol. 2014;114(7), 14391449. PubMed ID: 24668421 doi:10.1007/s00421-014-2863-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Rodríguez FA, Iglesias X, Feriche B, et al. Altitude training in elite swimmers for sea-level performance (Altitude Project). Med Sci Sports Exerc. 2015;47(9), 19651978. doi:10.1249/MSS.0000000000000626

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gore CJ, Clark SA, Saunders PU. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):16001609. PubMed ID: 17805094 doi:10.1249/mss.0b013e3180de49d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gore CJ, Hahn A, Craig N, et al. Altitude training at 2690 m does not increase total haemoglobin mass or sea-level V ˙ O 2 max in world champion track cyclists. J Sci Med Sport. 1998;1(3), 156170. PubMed ID: 9783517 doi:10.1016/S1440-2440(98)80011-X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Roels B, Hellard P, Schmitt L, Robach P, Richalet JP, Millet GP. Is it more effective for highly trained swimmers to live and train at 1200 m than at 1850 m in terms of performance and haematological benefits? Br J Sports Med. 2006;40(2):4. PubMed ID: 16431991 doi:10.1136/bjsm.2004.017103

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Saunders PU, Telford RD, Pyne DB, Gore CJ, Hahn AG. Improved race performance in elite middle-distance runners after cumulative altitude exposure. Int J Sports Physiol Perform. 2009;4(1):134138. doi:10.1123/ijspp.4.1.134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Frese F, Friedmann-Bette B. Effects of repetitive training at low altitude on erythropoiesis in 400 and 800 m runners. Int J Sports Med. 2010;31(6):382388. PubMed ID: 20301047 doi:10.1055/s-0030-1248328

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Wachsmuth NB, Völzke C, Prommer N, et al. The effects of classic altitude training on hemoglobin mass in swimmers. Eur J Appl Physiol. 2013;113(5):11991211. PubMed ID: 23138148 doi:10.1007/s00421-012-2536-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Garvican-Lewis LA, Halliday I, Abbiss CR, Saunders PU, Gore CJ. Altitude exposure at 1800 m increases haemoglobin mass in distance runners. J Sports Sci Med. 2015;14(2):413417. PubMed ID: 25983592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gore CJ, Hahn AG, Burge CM, Telford RD. V ˙ O 2 max and haemoglobin mass of trained athletes during high intensity training. Int J Sports Med. 1997;18(6):477482. doi:10.1055/s-2007-972667

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Bailey DM, Davies B, Romer L, Castell L, Newsholme E, Gandy G. Implications of moderate altitude training for sea-level endurance in elite distance runners. Eur J Appl Physiol. 1998;78(4):360368. doi:10.1007/s004210050432

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):125. PubMed ID: 20020784 doi:10.2165/11317920-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102112. PubMed ID: 9216951 doi:10.1152/jappl.1997.83.1.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):11641168. PubMed ID: 9662690 doi:10.1097/00005768-199807000-00023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5):486495. doi:10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Saunders PU, Garvican-Lewis LA, Schmidt WF, Gore CJ. Relationship between changes in haemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47(suppl 1):i2630. doi:10.1136/bjsports-2013-092841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gore CJ. The challenge of assessing athlete performance after altitude training. J Appl Physiol. 2014;116:593594. PubMed ID: 24436300 doi:10.1152/japplphysiol.00029.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Chapman RF, Stray-Gundersen J, Levine BD. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):14481456. PubMed ID: 9760340 doi:10.1152/jappl.1998.85.4.1448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Aubry A, Hausswirth C, Louis J, Coutts AJ, Le Meur Y. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc. 2014;46(9):17691777. PubMed ID: 25134000 doi:10.1249/MSS.0000000000000301

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Thomas L, Busso TH. A theoretical study of taper characteristics to optimize performance. Med Sci Sports Exerc. 2005;37(9):16151621. PubMed ID: 16177616 doi:10.1249/01.mss.0000177461.94156.4b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hellard P, Scordia C, Avalos M, Mujika I, Pyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab. 2017;42(10):11061117. PubMed ID: 28651061 doi:10.1139/apnm-2017-0180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Bosquet L, Montpetit J, Arvisais D, Mujika I. Effects of tapering on performance: a meta-analysis. Med Sci Sports Exerc. 2007;39(8):13581365. PubMed ID: 17762369 doi:10.1249/mss.0b013e31806010e0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Adams WC, Bernauer EM, Dill DB, Bomar JB. Effects of equivalent sea-level and altitude training on V ˙ O 2 max and running performance. J Appl Physiol. 1975;39(2):262266. PubMed ID: 1176388 doi:10.1152/jappl.1975.39.2.262

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3740 870 44
Full Text Views 64 14 5
PDF Downloads 56 14 5