Enhancement of Mood but not Performance in Elite Athletes With Transcranial Direct-Current Stimulation

Click name to view affiliation

Pedro L. Valenzuela
Search for other papers by Pedro L. Valenzuela in
Current site
Google Scholar
PubMed
Close
,
Carlos Amo
Search for other papers by Carlos Amo in
Current site
Google Scholar
PubMed
Close
,
Guillermo Sánchez-Martínez
Search for other papers by Guillermo Sánchez-Martínez in
Current site
Google Scholar
PubMed
Close
,
Elaia Torrontegi
Search for other papers by Elaia Torrontegi in
Current site
Google Scholar
PubMed
Close
,
Javier Vázquez-Carrión
Search for other papers by Javier Vázquez-Carrión in
Current site
Google Scholar
PubMed
Close
,
Zigor Montalvo
Search for other papers by Zigor Montalvo in
Current site
Google Scholar
PubMed
Close
,
Alejandro Lucia
Search for other papers by Alejandro Lucia in
Current site
Google Scholar
PubMed
Close
, and
Pedro de la Villa
Search for other papers by Pedro de la Villa in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine if transcranial direct-current stimulation (tDCS) could be effective for the enhancement of swimming performance or mood state in elite athletes. Methods: Eight male elite triathletes (age = 20 [2] y, maximal oxygen uptake = 71 [4] mL·kg−1·min−1) participated in this crossover, counterbalanced, sham-controlled, double-blind study. Participants received either actual (20 min of anodal stimulation of the motor cortex at 2 mA) or sham tDCS and performed an 800-m swimming test in which rating of perceived exertion and blood lactate response were measured. Mood state (Brunel Mood Scale) was assessed before and after each tDCS session and after the swimming test. Heart-rate variability and central nervous system readiness were assessed before and after each tDCS session. The chances of finding differences between conditions were determined using magnitude-based inferences. Results: A significant and very likely higher Brunel Mood Scale–determined vigor self-perception was found with actual tDCS after the stimulation session (−0.1 [1.2] and 2.0 [2.3] for sham and actual tDCS, respectively; P = .018, effect size = 1.14) and after exercise (−4.1 [2.9] and −0.9 [3.6] for sham and actual tDCS, respectively; P = .022, effect size = 0.98). However, likely trivial and nonsignificant (P > .05) differences were found between conditions in performance (599 [38] s and 596 [39] s, respectively). Unclear and nonsignificant differences were observed between conditions for the rest of the study end points. Conclusions: tDCS elicited a marked increase in vigor self-perception that was maintained after exercise but failed to improve swimming performance in elite triathletes.

Valenzuela and de la Villa are with the Physiology Unit, Dept of Systems Biology, School of Medicine, and Amo, the Electronics Dept, University of Alcalá, Madrid, Spain. Valenzuela, Sánchez-Martínez, Torrontegi, Vázquez-Carrión, and Montalvo are with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Lucia is with the Faculty of Sports Sciences, European University of Madrid, and Research Inst i + 12, Madrid, Spain.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):22942306. PubMed ID: 27003703 doi:10.1249/MSS.0000000000000923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Davis NJ. Neurodoping: brain stimulation as a performance-enhancing measure. Sports Med. 2013;43(8):649653. doi:10.1007/s40279-013-0027-z

  • 4.

    Nitsche MA, Paulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):18991901. PubMed ID: 11723286 doi:10.1212/WNL.57.10.1899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vaseghi B, Zoghi M, Jaberzadeh S. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol. 2014;125(9):18471858. PubMed ID: 24555922 doi:10.1016/j.clinph.2014.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Astokorki AHY, Mauger AR. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports. 2017;27(3):309317. doi:10.1111/sms.12659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Angius L, Hopker J, Mauger AR. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front Physiol. 2017;8:90. PubMed ID: 28261112 doi:10.3389/fphys.2017.00090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS ONE. 2015;10(12):0144916. doi:10.1371/journal.pone.0144916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Okano AH, Fontes EB, Montenegro RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):12131218. PubMed ID: 23446641 doi:10.1136/bjsports-2012-091658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Angius L, Mauger AR, Hopker J, Pascual-Leone A, Santarnecchi E, Marcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11(1):108117. PubMed ID: 29079458 doi:10.1016/j.brs.2017.09.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Angius L, Hopker JG, Marcora SM, Mauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol. 2015;115(11):23112319. PubMed ID: 26148882 doi:10.1007/s00421-015-3212-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barwood MJ, Butterworth J, Goodall S, et al. The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimul. 2016;9(6):842849. PubMed ID: 27567471 doi:10.1016/j.brs.2016.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Russell M, Goodman T, Wang Q, Groshong B, Lyeth BG. Gender differences in current received during transcranial electrical stimulation. Front Psychiatry. 2014;5:104. PubMed ID: 25177301 doi:10.3389/fpsyt.2014.00104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Batsikadze G, Moliadze V, Paulus W, Kuo MF, Nitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):19872000. PubMed ID: 23339180 doi:10.1113/jphysiol.2012.249730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845850. PubMed ID: 16427357 doi:10.1016/j.clinph.2005.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):11331145. PubMed ID: 21320389 doi:10.1017/S1461145710001690

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Skorski S, Thompson KG, Keegan RJ, Meyer T, Abbiss CR. A monetary reward alters pacing but not performance in competitive cyclists. Front Physiol. 2017;8:741. PubMed ID: 29033847 doi:10.3389/fphys.2017.00741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Terry PC, Lane AM, Fogarty GJ. Construct validity of the Profile of Mood States—adolescents for use with adults. Psychol Sport Exerc. 2003;4(2):125139. doi:10.1016/S1469-0292(01)00035-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773781. doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kovac S, Speckmann E, Gorji A. Uncensored EEG: the role of DC potentials in neurobiology of the brain. Prog Neurobiol. 2018;165–167:5165. doi:10.1016/j.pneurobio.2018.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Heishman AD, Curtis MA, Saliba E, Hornett RJ, Malin SK, Weltman AL. Noninvasive assessment of internal and external player load: implications for optimizing athletic performance. J Strength Cond Res. 2018;32(5):12801287. PubMed ID: 29373427 doi:10.1519/JSC.0000000000002413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. Estimating sample sizes for magnitude-based inference. Sportscience. 2006;10:6370.

  • 23.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 25.

    Hopkins W. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14 .

  • 26.

    Kim JH, Kim DW, Chang WH, Kim YH, Kim K, Im CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014;564:610. PubMed ID: 24508704 doi:10.1016/j.neulet.2014.01.054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Angius L, Pageaux B, Hopker J, Marcora SM, Mauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363375. PubMed ID: 27751960 doi:10.1016/j.neuroscience.2016.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Amann M, Venturelli M, Ives SJ, et al. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol. 2013;115(3):355364. PubMed ID: 23722705 doi:10.1152/japplphysiol.00049.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Thomas K, Goodall S, Stone M, Howatson G, Gibson ASC, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Zandi L, Rad LS. A comparison of the mood state profiles of winning and losing female athletes. Eur J Exp Biol. 2013;3(1):424428 .

  • 32.

    Brandt R, Bevilacqua GG, Andrade A. Perceived sleep quality, mood states, and their relationship with performance among Brazilian elite athletes during a competitive period. J Strength Cond Res. 2017;31(4):10331039. PubMed ID: 28328717 doi:10.1519/JSC.0000000000001551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Khedr EM, Omran EAH, Ismail NM, et al. Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial. Brain Stimul. 2017;10(5):893901. PubMed ID: 28684258 doi:10.1016/j.brs.2017.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kekic M, McClelland J, Bartholdy S, et al. Single-session transcranial direct current stimulation temporarily improves symptoms, mood, and self-regulatory control in bulimia nervosa: a randomised controlled trial. PLoS ONE. 2017;12(1):e0167606. PubMed ID: 28121991 doi:10.1371/journal.pone.0167606

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sehm B, Schafer A, Kipping J, et al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 2012;108(12):32533263. PubMed ID: 22993265 doi:10.1152/jn.00606.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lang N, Siebner HR, Ward NS, et al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495504. PubMed ID: 16045502 doi:10.1111/j.1460-9568.2005.04233.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Herrington JD, Mohanty A, Koven NS, et al. Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion. 2005;5(2):200207. PubMed ID: 15982085 doi:10.1037/1528-3542.5.2.200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Okano AH, Machado DGS, Oliveira Neto L, et al. Can transcranial direct current stimulation modulate psychophysiological response in sedentary men during vigorous aerobic exercise? Int J Sports Med. 2017;38(7):493500. PubMed ID: 28514807 doi:10.1055/s-0042-121897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Montenegro RA, Farinatti Pde T, Fontes EB, et al. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett. 2011;497(1):3236. PubMed ID: 21527314 doi:10.1016/j.neulet.2011.04.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Clancy JA, Johnson R, Raw R, Deuchars SA, Deuchars J. Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimul. 2014;7(1):97104. PubMed ID: 24080439 doi:10.1016/j.brs.2013.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4655 1005 45
Full Text Views 87 36 4
PDF Downloads 72 22 2