Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine if transcranial direct-current stimulation (tDCS) could be effective for the enhancement of swimming performance or mood state in elite athletes. Methods: Eight male elite triathletes (age = 20 [2] y, maximal oxygen uptake = 71 [4] mL·kg−1·min−1) participated in this crossover, counterbalanced, sham-controlled, double-blind study. Participants received either actual (20 min of anodal stimulation of the motor cortex at 2 mA) or sham tDCS and performed an 800-m swimming test in which rating of perceived exertion and blood lactate response were measured. Mood state (Brunel Mood Scale) was assessed before and after each tDCS session and after the swimming test. Heart-rate variability and central nervous system readiness were assessed before and after each tDCS session. The chances of finding differences between conditions were determined using magnitude-based inferences. Results: A significant and very likely higher Brunel Mood Scale–determined vigor self-perception was found with actual tDCS after the stimulation session (−0.1 [1.2] and 2.0 [2.3] for sham and actual tDCS, respectively; P = .018, effect size = 1.14) and after exercise (−4.1 [2.9] and −0.9 [3.6] for sham and actual tDCS, respectively; P = .022, effect size = 0.98). However, likely trivial and nonsignificant (P > .05) differences were found between conditions in performance (599 [38] s and 596 [39] s, respectively). Unclear and nonsignificant differences were observed between conditions for the rest of the study end points. Conclusions: tDCS elicited a marked increase in vigor self-perception that was maintained after exercise but failed to improve swimming performance in elite triathletes.

Valenzuela and de la Villa are with the Physiology Unit, Dept of Systems Biology, School of Medicine, and Amo, the Electronics Dept, University of Alcalá, Madrid, Spain. Valenzuela, Sánchez-Martínez, Torrontegi, Vázquez-Carrión, and Montalvo are with the Dept of Sport and Health, Spanish Agency for Health Protection in Sport (AEPSAD), Madrid, Spain. Lucia is with the Faculty of Sports Sciences, European University of Madrid, and Research Inst i + 12, Madrid, Spain.

Valenzuela (pedrol.valenzuela@edu.uah.es) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 2001;81(4):17251789. PubMed ID: 11581501 doi:10.1152/physrev.2001.81.4.1725

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Taylor JLAmann MDuchateau JMeeusen RRice CL. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med Sci Sports Exerc. 2016;48(11):22942306. PubMed ID: 27003703 doi:10.1249/MSS.0000000000000923

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Davis NJ. Neurodoping: brain stimulation as a performance-enhancing measure. Sports Med. 2013;43(8):649653. doi:10.1007/s40279-013-0027-z

  • 4.

    Nitsche MAPaulus W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):18991901. PubMed ID: 11723286 doi:10.1212/WNL.57.10.1899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Vaseghi BZoghi MJaberzadeh S. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol. 2014;125(9):18471858. PubMed ID: 24555922 doi:10.1016/j.clinph.2014.01.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Astokorki AHYMauger AR. Tolerance of exercise-induced pain at a fixed rating of perceived exertion predicts time trial cycling performance. Scand J Med Sci Sports. 2017;27(3):309317. doi:10.1111/sms.12659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Angius LHopker JMauger AR. The ergogenic effects of transcranial direct current stimulation on exercise performance. Front Physiol. 2017;8:90. PubMed ID: 28261112 doi:10.3389/fphys.2017.00090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vitor-Costa MOkuno NMBortolotti Het al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS ONE. 2015;10(12):0144916. doi:10.1371/journal.pone.0144916

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Okano AHFontes EBMontenegro RAet al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med. 2015;49(18):12131218. PubMed ID: 23446641 doi:10.1136/bjsports-2012-091658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Angius LMauger ARHopker JPascual-Leone ASantarnecchi EMarcora SM. Bilateral extracephalic transcranial direct current stimulation improves endurance performance in healthy individuals. Brain Stimul. 2018;11(1):108117. PubMed ID: 29079458 doi:10.1016/j.brs.2017.09.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Angius LHopker JGMarcora SMMauger AR. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol. 2015;115(11):23112319. PubMed ID: 26148882 doi:10.1007/s00421-015-3212-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barwood MJButterworth JGoodall Set al. The effects of direct current stimulation on exercise performance, pacing and perception in temperate and hot environments. Brain Stimul. 2016;9(6):842849. PubMed ID: 27567471 doi:10.1016/j.brs.2016.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Russell MGoodman TWang QGroshong BLyeth BG. Gender differences in current received during transcranial electrical stimulation. Front Psychiatry. 2014;5:104. PubMed ID: 25177301 doi:10.3389/fpsyt.2014.00104

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Batsikadze GMoliadze VPaulus WKuo MFNitsche MA. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol. 2013;591(7):19872000. PubMed ID: 23339180 doi:10.1113/jphysiol.2012.249730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Gandiga PCHummel FCCohen LG. Transcranial DC stimulation (tDCS): a tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845850. PubMed ID: 16427357 doi:10.1016/j.clinph.2005.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Brunoni ARAmadera JBerbel BVolz MSRizzerio BGFregni F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 2011;14(8):11331145. PubMed ID: 21320389 doi:10.1017/S1461145710001690

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Skorski SThompson KGKeegan RJMeyer TAbbiss CR. A monetary reward alters pacing but not performance in competitive cyclists. Front Physiol. 2017;8:741. PubMed ID: 29033847 doi:10.3389/fphys.2017.00741

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Terry PCLane AMFogarty GJ. Construct validity of the Profile of Mood States—adolescents for use with adults. Psychol Sport Exerc. 2003;4(2):125139. doi:10.1016/S1469-0292(01)00035-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Plews DJLaursen PBStanley JKilding AEBuchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sports Med. 2013;43(9):773781. doi:10.1007/s40279-013-0071-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kovac SSpeckmann EGorji A. Uncensored EEG: the role of DC potentials in neurobiology of the brain. Prog Neurobiol. 2018;165–167:5165. doi:10.1016/j.pneurobio.2018.02.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Heishman ADCurtis MASaliba EHornett RJMalin SKWeltman AL. Noninvasive assessment of internal and external player load: implications for optimizing athletic performance. J Strength Cond Res. 2018;32(5):12801287. PubMed ID: 29373427 doi:10.1519/JSC.0000000000002413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Hopkins WG. Estimating sample sizes for magnitude-based inference. Sportscience. 2006;10:6370.

  • 23.

    Hopkins WMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 25.

    Hopkins W. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14 .

  • 26.

    Kim JHKim DWChang WHKim YHKim KIm CH. Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett. 2014;564:610. PubMed ID: 24508704 doi:10.1016/j.neulet.2014.01.054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Angius LPageaux BHopker JMarcora SMMauger AR. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience. 2016;339:363375. PubMed ID: 27751960 doi:10.1016/j.neuroscience.2016.10.028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Amann MVenturelli MIves SJet al. Peripheral fatigue limits endurance exercise via a sensory feedback-mediated reduction in spinal motoneuronal output. J Appl Physiol. 2013;115(3):355364. PubMed ID: 23722705 doi:10.1152/japplphysiol.00049.2013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Thomas KGoodall SStone MHowatson GGibson ASCAnsley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc. 2015;47(3):537546. PubMed ID: 25051388 doi:10.1249/MSS.0000000000000448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Saw AEMain LCGastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Zandi LRad LS. A comparison of the mood state profiles of winning and losing female athletes. Eur J Exp Biol. 2013;3(1):424428 .

  • 32.

    Brandt RBevilacqua GGAndrade A. Perceived sleep quality, mood states, and their relationship with performance among Brazilian elite athletes during a competitive period. J Strength Cond Res. 2017;31(4):10331039. PubMed ID: 28328717 doi:10.1519/JSC.0000000000001551

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Khedr EMOmran EAHIsmail NMet al. Effects of transcranial direct current stimulation on pain, mood and serum endorphin level in the treatment of fibromyalgia: a double blinded, randomized clinical trial. Brain Stimul. 2017;10(5):893901. PubMed ID: 28684258 doi:10.1016/j.brs.2017.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Kekic MMcClelland JBartholdy Set al. Single-session transcranial direct current stimulation temporarily improves symptoms, mood, and self-regulatory control in bulimia nervosa: a randomised controlled trial. PLoS ONE. 2017;12(1):e0167606. PubMed ID: 28121991 doi:10.1371/journal.pone.0167606

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sehm BSchafer AKipping Jet al. Dynamic modulation of intrinsic functional connectivity by transcranial direct current stimulation. J Neurophysiol. 2012;108(12):32533263. PubMed ID: 22993265 doi:10.1152/jn.00606.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Lang NSiebner HRWard NSet al. How does transcranial DC stimulation of the primary motor cortex alter regional neuronal activity in the human brain? Eur J Neurosci. 2005;22(2):495504. PubMed ID: 16045502 doi:10.1111/j.1460-9568.2005.04233.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Herrington JDMohanty AKoven NSet al. Emotion-modulated performance and activity in left dorsolateral prefrontal cortex. Emotion. 2005;5(2):200207. PubMed ID: 15982085 doi:10.1037/1528-3542.5.2.200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Okano AHMachado DGSOliveira Neto Let al. Can transcranial direct current stimulation modulate psychophysiological response in sedentary men during vigorous aerobic exercise? Int J Sports Med. 2017;38(7):493500. PubMed ID: 28514807 doi:10.1055/s-0042-121897

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Montenegro RAFarinatti Pde TFontes EBet al. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett. 2011;497(1):3236. PubMed ID: 21527314 doi:10.1016/j.neulet.2011.04.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Clancy JAJohnson RRaw RDeuchars SADeuchars J. Anodal transcranial direct current stimulation (tDCS) over the motor cortex increases sympathetic nerve activity. Brain Stimul. 2014;7(1):97104. PubMed ID: 24080439 doi:10.1016/j.brs.2013.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 82 82 34
Full Text Views 3 3 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar