Optimization of the Force–Velocity Relationship Obtained From the Bench-Press-Throw Exercise: An a Posteriori Multicenter Reliability Study

Click name to view affiliation

Amador García-Ramos
Search for other papers by Amador García-Ramos in
Current site
Google Scholar
PubMed
Close
and
Slobodan Jaric
Search for other papers by Slobodan Jaric in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: An a posteriori multicenter reliability study was conducted to compare the reliability of the outcomes derived from the linear force–velocity (F–V) relationship (F-intercept [F0], V-intercept [V0], F–V slope, and maximum power [Pmax]) using a 2-point method based on 2 distant loads with respect to a multiple-point method based on 4 proximal loads and a multiple-point method that considered all 6 tested loads. Method: Data from 63 healthy men derived from 3 studies were analyzed. The F–V relationship obtained from the bench-press-throw exercise was determined in 2 separate sessions using 3 different combinations of loads: 2-point method (20–70% of 1-repetition maximum [1RM]), 4-load multiple-point method (30–40–50–60% of 1RM), and 6-load multiple-point method (20–30–40–50–60–70% of 1RM). Reliability was assessed through the coefficient of variation (CV), whereas a CVratio of 1.15 was deemed as the smallest important ratio. Results: The 2-point method provided the outcomes of the F–V relationship with greater reliability than the 4-load multiple-point method (F0, 3.58% vs 4.53%, CVratio = 1.27; V0, 5.58% vs 7.85%, CVratio = 1.41; F–V slope, 8.57% vs 11.99%, CVratio = 1.40; Pmax, 4.33% vs 4.81%, CVratio = 1.11). The reliability of the 6-load multiple-point method was comparable to the 2-point method (F0, 3.53%, CVratio = 1.01; V0, 5.32%, CVratio = 1.05; F–V slope, 8.38%, CVratio = 1.02; P0, 3.74%, CVratio = 1.16). Conclusion:The distance between experimental points is more important for obtaining a reproducible F–V relationship than the number of experimental points; therefore, the 2-point method could be recommended for a quicker assessment of the F–V relationship.

García-Ramos is with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain, and the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of the Most Holy Conception, Concepción, Chile. Jaric is with the Biomechanics and Movement Science Graduate Program, Dept of Kinesiology and Applied Physiology, University of Delaware, Newark, DE; Faculty of Sport and Physical Education, University of Belgrade, Belgrade, Serbia; and Dept of Human Motor Behavior, Jerzy Kukuczka Academy of Physical Education in Katowice, Katowice, Poland.

García-Ramos (amagr@ugr.es) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Grbic V, Djuric S, Knezevic O, Mirkov D, Nedeljkovic A, Jaric S. A novel two-velocity method for elaborate isokinetic testing of knee extensors. Int J Sports Med. 2017;38(10):741746. PubMed ID: 28768340 doi:10.1055/s-0043-113043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    García-Ramos A, Jaric S, Padial P, Feriche B. Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. J Appl Biomech. 2016;32(2):178185. doi:10.1123/jab.2015-0162

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Samozino P, Rejc E, Di Prampero PE, Belli A, Morin JB. Optimal force-velocity profile in ballistic movements—altius: citius or fortius? Med Sci Sports Exerc. 2012;44(2):313322. PubMed ID: 21775909 doi:10.1249/MSS.0b013e31822d757a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Lemaire A, Ripamonti M, Ritz M, Rahmani A. Agreement of three vs. eight isokinetic preset velocities to determine knee extensor torque– and power–velocity relationships. Isokinet Exerc Sci. 2014;22(1):17.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Jaric S. Force–velocity relationship of muscles performing multi-joint maximum performance tasks. Int J Sports Med. 2015;36(9):699704. PubMed ID: 25806588 doi:10.1055/s-0035-1547283

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Samozino P, Edouard P, Sangnier S, Brughelli M, Gimenez P, Morin J. Force–velocity profile: imbalance determination and effect on lower limb ballistic performance. Int J Sports Med. 2014;35(6):505510. PubMed ID: 24227123

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front Physiol. 2017;7:677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mendiguchia J, Samozino P, Martinez-Ruiz M, et al. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med. 2014;35(8):690695. PubMed ID: 24424959 doi:10.1055/s-0033-1363192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mendiguchia J, Edouard P, Samozino P, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535541. PubMed ID: 26648237 doi:10.1080/02640414.2015.1122207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    García-Ramos A, Jaric S. Two-point method: a quick and fatigue-free procedure for assessment of muscle mechanical capacities and the one-repetition maximum. Strength Cond J. 2018;40(2):5466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Picerno P. Good practice rules for the assessment of the force-velocity relationship in isoinertial resistance exercises. Asian J Sports Med. 2017;8(3):15590.

    • Search Google Scholar
    • Export Citation
  • 12.

    Sreckovic S, Cuk I, Djuric S, Nedeljkovic A, Mirkov D, Jaric S. Evaluation of force-velocity and power-velocity relationship of arm muscles. Eur J Appl Physiol. 2015;115(8):17791787. PubMed ID: 25828144 doi:10.1007/s00421-015-3165-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cuk I, Markovic M, Nedeljkovic A, Ugarkovic D, Kukolj M, Jaric S. Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. Eur J Appl Physiol. 2014;114(8):17031714. PubMed ID: 24819449 doi:10.1007/s00421-014-2901-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. Muscle force–velocity relationships observed in four different functional tests. J Hum Kinet. 2017;56:3949. PubMed ID: 28469742 doi:10.1515/hukin-2017-0021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    García-Ramos A, Feriche B, Pérez-Castilla A, Padial P, Jaric S. Assessment of leg muscles mechanical capacities: which jump, loading, and variable type provide the most reliable outcomes? Eur J Sport Sci. 2017;17(6):690698. doi:10.1080/17461391.2017.1304999

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jaric S. Two-load method for distinguishing between muscle force, velocity, and power-producing capacities. Sports Med. 2016;46(11):15851589. PubMed ID: 27075326 doi:10.1007/s40279-016-0531-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pérez-Castilla A, Jaric S, Feriche B, Padial P, García-Ramos A. Evaluation of muscle mechanical capacities through the two-load method: optimization of the load selection. J Strength Cond Res. 2018;32(5):12451253. PubMed ID: 28475551 doi:10.1519/JSC.0000000000001969

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    García-Ramos A, Torrejón A, Pérez-Castilla A, Morales-Artacho A, Jaric S. Selective changes on the mechanical capacities of lower-body muscles after a cycle-ergometer sprint training against heavy and light resistances. Int J Sport Physiol Perform. 2018;13(3):290297. doi:10.1123/ijspp.2017-0239

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Zivkovic MZ, Djuric S, Cuk I, Suzovic D, Jaric S. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks. J Sports Sci. 2017;35(13):12871293. PubMed ID: 27541062 doi:10.1080/02640414.2016.1221521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Dobrijevic S, Ilic V, Djuric S, Jaric S. Force-velocity relationship of leg muscles assessed with motorized treadmill tests: two-velocity method. Gait Posture. 2017;56:6064. PubMed ID: 28501023 doi:10.1016/j.gaitpost.2017.04.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    García-Ramos A, Torrejón A, Morales-Artacho A, Pérez-Castilla A, Jaric S. Optimal resistive forces for maximizing the reliability of leg muscles capacities tested on a cycle ergometer. J Appl Biomech. 2018;34(1):4752. doi:10.1123/jab.2017-0056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    García-Ramos A, Pestaña-Melero F, Pérez-Castilla A, Rojas F, Haff G. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res. 2018;32(5):12731279. doi:10.1519/JSC.0000000000001998

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    James LP, Roberts LA, Haff GG, Kelly VG, Beckman EM. Validity and reliability of a portable isometric mid-thigh clean pull. J Strength Cond Res. 2017;31(5):13781386. PubMed ID: 28415068 doi:10.1519/JSC.0000000000001201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Fulton SK, Pyne D, Hopkins W, Burkett B. Variability and progression in competitive performance of Paralympic swimmers. J Sports Sci. 2009;27(5):535539. PubMed ID: 19219736 doi:10.1080/02640410802641418

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hopkins W. Calculations for Reliability (Excel Spreedsheet). 2000. http://www.sportsci.org/resource/stats/relycalc.html%7B#%7Dexcel. Accessed June 19, 2018.

    • Search Google Scholar
    • Export Citation
  • 26.

    Jímenez-Reyes P, Samozino P, Pareja-Blanco F, et al. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int J Sports Physiol Perform. 2017;12(1):3643. doi:10.1123/IJSPP.2015-0484

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rahmani A, Samozino P, Morin J-B, Morel B. A simple method for assessing upper limb force-velocity profile in bench press. Int J Sports Physiol Perform. 2018;13(2):200207. PubMed ID: 28605252 doi:10.1123/ijspp.2016-0814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Hopkins W. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2890 771 19
Full Text Views 58 11 1
PDF Downloads 28 3 0