The Threshold Ambient Temperature for the Use of Precooling to Improve Cycling Time-Trial Performance

Click name to view affiliation

Steve H. Faulkner
Search for other papers by Steve H. Faulkner in
Current site
Google Scholar
PubMed
Close
,
Iris Broekhuijzen
Search for other papers by Iris Broekhuijzen in
Current site
Google Scholar
PubMed
Close
,
Margherita Raccuglia
Search for other papers by Margherita Raccuglia in
Current site
Google Scholar
PubMed
Close
,
Maarten Hupperets
Search for other papers by Maarten Hupperets in
Current site
Google Scholar
PubMed
Close
,
Simon G. Hodder
Search for other papers by Simon G. Hodder in
Current site
Google Scholar
PubMed
Close
, and
George Havenith
Search for other papers by George Havenith in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Cycling time-trial performance can be compromised by moderate to high ambient temperatures. It has become commonplace to implement precooling prior to competition to alleviate this performance decline. However, little is known about the ambient temperature threshold above which precooling becomes an effective strategy for enhancing endurance performance. The aim of this study was to investigate the effect of precooling in different environmental temperatures on time-trial (TT) performance. Methods: Trained cyclists completed 2 TTs with (COLD) and without (CON) precooling using an ensemble of  ice vest and sleeves in ambient temperatures of 24°C, 27°C, and 35°C. Results: TT performance was faster following COLD in both 35°C (6.2%) and 27°C (2.6%; both Ps < .05) but not 24°C (1.2%). Magnitude-based inferential statistics indicate that COLD was very likely beneficial to performance in 35°C, likely beneficial in 27°C, and possibly beneficial in 24°C. Mean power was 2.4%, 2.5%, and 5.6% higher following COLD and considered to be likely beneficial in 24°C and very likely beneficial in 27°C and 35°C. COLD reduced mean skin temperature throughout the warm-up and into the TT in all ambient temperatures (P < .05). Sweat loss was lower following COLD in 24°C and 27°C but not 35°C. There was no effect of COLD on gastrointestinal temperature at any point. Conclusions: Precooling with an ice vest and sleeves is likely to have a positive effect on TT performance at temperatures above 24°C, with a clear relationship between ambient temperature and the magnitude of effect of precooling.

Faulkner is with the Dept of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom. Faulkner, Broekhuijzen, Raccuglia, Hodder, and Havenith are with the Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom. Hupperets is with the Future Sport Science Laboratory, Adidas AG, Herzogenaurach, Germany.

Faulkner (Steve.Faulkner@ntu.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Tatterson AJ, Hahn AG, Martini DT, Febbraio MA. Effects of heat stress on physiological responses and exercise performance in elite cyclists. J Sci Med Sport. 2000;3(2):186193. PubMed ID: 11104310 doi:10.1016/S1440-2440(00)80080-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tucker R, Marle T, Lambert EV, Noakes TD. The rate of heat storage mediates an anticipatory reduction in exercise intensity during cycling at a fixed rating of perceived exertion. J Physiol. 2006;574(3):905915. PubMed ID: 16497719 doi:10.1113/jphysiol.2005.101733

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Maughan RJ, Otani H, Watson P. Influence of relative humidity on prolonged exercise capacity in a warm environment. Eur J Appl Physiol. 2012;112(6):23132321. PubMed ID: 22012542 doi:10.1007/s00421-011-2206-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Effects of solar radiation on endurance exercise capacity in a hot environment. Eur J Appl Physiol. 2016;116(4):769779. PubMed ID: 26842928 doi:10.1007/s00421-016-3335-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Havenith G, Fiala D. Thermal indices and thermophysiological modeling for heat stress. Compr Physiol. 2015;6(1):255302. PubMed ID: 26756633 doi:10.1002/cphy.c140051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Périard JD, Racinais S, Timpka T, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF World Athletics Championships. Br J Sports Med. 2017;51(4):264270. PubMed ID: 27815238 doi:10.1136/bjsports-2016-096579

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bongers CCWG, Thijssen DHJ, Veltmeijer MTW, Hopman MTE, Eijsvogels TMH. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377384. PubMed ID: 24747298 doi:10.1136/bjsports-2013-092928

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med. 2015;49(1):713. PubMed ID: 23945034 doi:10.1136/bjsports-2012-091739

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Faulkner SH, Hupperets M, Hodder SG, Havenith G. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):183189. PubMed ID: 25943669 doi:10.1111/sms.12373

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Siegel R, Maté J, Watson G, Nosaka K, Laursen PB. The influence of ice slurry ingestion on maximal voluntary contraction following exercise-induced hyperthermia. Eur J Appl Physiol. 2011;111(10):25172524. PubMed ID: 21360201 doi:10.1007/s00421-011-1876-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ross MLR, Garvican LA, Jeacocke NA, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123133. PubMed ID: 20508537 doi:10.1249/MSS.0b013e3181e93210

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Wegmann M, Faude O, Poppendieck W, Hecksteden A, Fröhlich M, Meyer T. Pre-cooling and sports performance: a meta-analytical review. Sport Med. 2012;42(7):545564. PubMed ID: 22642829 doi:10.2165/11630550-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Galloway SD, Maughan RJ, Laursen PB, et al. Effects of ambient temperature on the capacity to perform prolonged cycle exercise in man. Med Sci Sports Exerc. 1997;29(9):12401249. PubMed ID: 9309637 doi:10.1097/00005768-199709000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    De Pauw K, Roelands B, De Geus B, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8:111122. PubMed ID: 23428482 doi:10.1123/ijspp.8.2.111

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497504. PubMed ID: 718832 doi:10.1079/BJN19780152

  • 16.

    International Organization for Standardization. Ergonomics—Evaluation of Thermal Strain by Physiological Measurements. Geneva, Switzerland: International Organization for Standardization; 2004.

    • Search Google Scholar
    • Export Citation
  • 17.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

  • 18.

    ASHRAE. Thermal comfort. In: Parsons RE, ed. ASHRAE Handbook of Fundamentals. Atlanta, GA: American Society of Mechanical Engineers; 1997:8.18.26.

    • Search Google Scholar
    • Export Citation
  • 19.

    Griffiths ID, Boyce PR. Performance and thermal comfort. Ergonomics. 1971;14(4):457468. PubMed ID: 5139965 doi:10.1080/00140137108931266

  • 20.

    Faulkner SH, Ferguson RA, Hodder SG, Havenith G. External muscle heating during warm-up does not provide added performance benefit above external heating in the recovery period alone. Eur J Appl Physiol. 2013;113(11):27132721. PubMed ID: 23974847 doi:10.1007/s00421-013-2708-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen JW. Statistical Power Analysis for the Behavioural Sciences. 2nd ed. Hillside, NJ: Lawrence Erlbaum Associates; 1988.

  • 23.

    Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement. Med Sci Sports Exerc. 1999;31(3):472485. PubMed ID: 10188754 doi:10.1097/00005768-199903000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Cheuvront SN, Carter R III, Sawka MN. Fluid balance and endurance exercise performance. Curr Sports Med Rep. 2003;2(4):202208. PubMed ID: 12834575 doi:10.1249/00149619-200308000-00006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Walsh R, Noakes T, Hawley J, Dennis S. Impaired high-intensity cycling performance time at low levels of dehydration. Int J Sports Med. 1994;15(7):392398. PubMed ID: 8002117 doi:10.1055/s-2007-1021076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cheung SS, Mcgarr GW, Mallette MM, et al. Separate and combined effects of dehydration and thirst sensation on exercise performance in the heat. Scand J Med Sci Sports. 2015;25(suppl 1):104111. PubMed ID: 25943661 doi:10.1111/sms.12343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Berkulo MAR, Bol S, Levels K, et al. Ad-libitum drinking and performance during a 40-km cycling time trial in the heat. Eur J Sport Sci. 2016;16(2):213220. PubMed ID: 25675355 doi:10.1080/17461391.2015.1009495

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Schlader ZJ, Simmons SE, Stannard SR, Mündel T. Skin temperature as a thermal controller of exercise intensity. Eur J Appl Physiol. 2011;111(8):16311639. PubMed ID: 21197543 doi:10.1007/s00421-010-1791-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schlader ZJ, Prange HD, Mickleborough TD, Stager JM. Characteristics of the control of human thermoregulatory behavior. Physiol Behav. 2009;98(5):557562. PubMed ID: 19748517 doi:10.1016/j.physbeh.2009.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327332. PubMed ID: 22143882 doi:10.1113/expphysiol.2011.061002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Marcora S, Perrey S, Smirmaul BPC, et al. Counterpoint: afferent feedback from fatigued locomotor muscles is not an important determinant of endurance exercise performance. J Appl Physiol. 2010;108(2):454456. PubMed ID: 20118347 doi:10.1152/japplphysiol.00976.2009a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Perrey S, de Smirmaul PCB, Bosio A, et al. Comments on point: counterpoint: afferent feedback from fatigued locomotor muscles is/is not an important determinant of endurance exercise performance. J Appl Physiol. 2010;108(2):458468. PubMed ID: 20118350 doi:10.1152/japplphysiol.01388.2009

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2713 737 25
Full Text Views 70 34 4
PDF Downloads 50 22 1