Cardiac Parasympathetic and Anaerobic Performance Recovery After High-Intensity Exercise in Rowers

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To determine the effect of different high-intensity interval-training (IT) sessions on the postexercise recovery response and time course across varying recovery measures. Methods: A total of 13 highly trained rowers (10 male and 3 female, peak oxygen uptake during a 6-min maximal test 4.9 [0.7] L·min−1) completed 3 IT sessions on a rowing ergometer separated by 7 d. Sessions consisted of 5 × 3.5 min, 4-min rest periods (maximal oxygen uptake [VO2max]); 10 × 30 s, 5-min rest periods (glycolytic); and 5 × 10 min, 4-min rest periods (threshold). Participants were instructed to perform intervals at the highest maintainable pace. Blood lactate and salivary cortisol were measured preexercise and postexercise. Resting heart-rate (HR) variability, post-submaximal-exercise HR variability, submaximal-exercise HR, HR recovery, and modified Wingate peak and mean power were measured preexercise and 1, 10, 24, 34, 48, 58, and 72 h postexercise. Participants resumed training throughout the measurement period. Results: Between-groups short-term response differences (1 h post-IT) across IT sessions were trivial or unclear for all recovery variables. However, post-submaximal-exercise HR variability demonstrated the longest recovery time course (threshold = 37.8 [14.2], glycolytic = 20.2 [11.0], and VO2max = 20.6 [15.2]; mean [h] ± confidence limits). Conclusion: Short-term responses to threshold, glycolytic, and VO2max IT in highly trained male and female rowers were similar. Recovery time course was greatest following threshold compared with glycolytic and VO2max-focused training, suggesting a durational influence on recovery time course at HR intensities ≥80% HRmax. As such, this provides valuable information around the programming and sequencing of high-intensity IT for endurance athletes.

Holt, Plews, and Kilding are with Sports Performance Research Inst New Zealand (SPRINZ), and Merien, AUT Roche Diagnostics Laboratory, School of Science, Auckland University of Technology, Auckland, New Zealand. Holt is also with the Victoria Inst of Sport, Melbourne, Australia. Oberlin-Brown is with High Performance Sport New Zealand, Auckland, New Zealand.

Holt (ana.holt@vis.org.au) is corresponding author.
  • 1.

    Meeusen R, Duclos M, Foster C, et al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European college of sport science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45(1):186–205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sport Med. 2013;43(12):1259–1277. doi:10.1007/s40279-013-0083-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Seiler S, Haugen O, Kuffel E. Autonomic recovery after exercise in trained athletes: intensity and duration effects. Med Sci Sports Exerc. 2007;39(8):1366–1373. PubMed ID: 17762370 doi:10.1249/mss.0b013e318060f17d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hautala A, Tulppo MP, Makikallio TH, Laukkanen R, Nissila S, Huikuri HV. Changes in cardiac autonomic regulation after prolonged maximal exercise. Clin Physiol. 2001;21(2):238–245. PubMed ID: 11318832 doi:10.1046/j.1365-2281.2001.00309x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Kiviniemi AM, Hautala AJ, Kinnunen H, et al. Daily exercise prescription on the basis of HR variability among men and women. Med Sci Sports Exerc. 2010;42(7):1355–1363. PubMed ID: 20575165 doi:10.1249/MSS.0b013e3181cd5f39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart-rate variability and training-intensity distribution in elite rowers. Int J Sports Physiol Perform. 2014;9(6):1026–1032. PubMed ID: 24700160 doi:10.1123/ijspp.2013-0497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Niewiadomski W, Gasiorowska A, Krauss B, Mróz A, Cybulski G. Suppression of heart rate variability after supramaximal exertion. Clin Physiol Funct Imaging. 2007;27(5):309–319. PubMed ID: 17697028 doi:10.1111/j.1475-097X.2007.00753.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Parekh A, Lee CM. Heart rate variability after isocaloric exercise bouts of different intensities. Med Sci Sports Exerc. 2005;37(4):599–605. PubMed ID: 15809558 doi:10.1249/01.MSS.0000159139.29220.9A

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Garrandes F, Colson SS, Pensini M, Seynnes O, Legros P. Neuromuscular fatigue profile in endurance-trained and power-trained athletes. Med Sci Sports Exerc. 2007;39(1):149–158. PubMed ID: 17218897 doi:10.1249/01.mss.0000240322.00782.c9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Tesch P. Muscle fatigue in man. With special reference to lactate accumulation during short term intense exercise. Acta Physiol Scand Suppl. 1980;480:1. PubMed ID: 6933824

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ahtiainen JP, Pakarinen A, Kraemer WJ, Häkkinen K. Acute hormonal and neuromuscular responses and recovery to forced vs maximum repetitions multiple resistance exercises. Int J Sports Med. 2003;24(6):410–418. PubMed ID: 12905088 doi:10.1055/s-2003-41171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mourot L, Bouhaddi M, Tordi N, Rouillon JD, Regnard J. Short- and long-term effects of a single bout of exercise on heart rate variability: comparison between constant and interval training exercises. Eur J Appl Physiol. 2004;92(4–5):508–517. PubMed ID: 15461995 doi:10.1007/s00421-004-1119-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Fiskerstrand Å, Seiler KS. Training and performance characteristics among Norwegian International Rowers 1970–2001. Scand J Med Sci Sport. 2004;14(5):303–310. doi:10.1046/j.1600-0838.2003.370.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: anaerobic energy, neuromuscular load and practical applications. Sport Med. 2013;43(10):927–954. doi:10.1007/s40279-013-0066-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109–115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nunan D, Gay D, Jakovljevic DG, Hodges LD, Sandercock GRH, Brodie DA. Validity and reliability of short-term heart-rate variability from the Polar S810. Med Sci Sports Exerc. 2009;41(1):243–250. PubMed ID: 19092682 doi:10.1249/MSS.0b013e318184a4b1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Malik M, Thomas Bigger J, Camm J, et al. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–381. doi:10.1093/oxfordjournals.eurheartja014868

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Buchheit M, Voss SC, Nybo L, Mohr M, Racinais S. Physiological and performance adaptations to an in-season soccer camp in the heat: associations with heart rate and heart rate variability. Scand J Med Sci Sport. 2011;21(6):477–486. doi:10.1111/j.1600-0838.2011.01378.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Riechman SE, Zoeller RF, Balasekaran G, Goss FL, Robertson RJ. Prediction of 2000 m indoor rowing performance using a 30 s sprint and maximal oxygen uptake. J Sports Sci. 2002;20(2):681–687.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hopkins W, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins W. Spreadsheets for analysis of controlled trials, with adjustment for a subject characteristic. Sportscience. 2006;10:46–50.

  • 22.

    Hopkins W. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a p value. Sportscience. 2007;11:16–20.

    • Search Google Scholar
    • Export Citation
  • 23.

    Plews DJ, Laursen PB, Kilding AE, Buchheit M. Heart rate variability in elite triathletes, is variation in variability the key to effective training a case comparison. Eur J Appl Physiol. 2012;112(11):3729–3741. PubMed ID: 22367011 doi:10.1007/s00421-012-2354-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Papelier Y, Laursen PB, Ahmaidi S. Noninvasive assessment of cardiac parasympathetic function: postexercise heart rate recovery or heart rate variability? Am J Physiol Heart Circ Physiol. 2007;293(1):H8–H10. doi:10.1152/ajpheart.00335.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743–751. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5(3):276–291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Samuels C. Sleep, recovery, and performance: the new frontier in high-performance athletics. Neurol Clin. 2008;26(1):169–180. doi:10.1016/J.Ncl.2007.11.012

  • 28.

    Perna FM, McDowell SL. Role of psychological stress in cortisol recovery from exhaustive exercise among elite athletes. Int J Behav Med. 1995;2(1):13–26. PubMed ID: 16250786 doi:10.1207/s15327558ijbm0201_2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 180 180 13
Full Text Views 12 12 0
PDF Downloads 4 4 0