Influence of Exercise Time of Day on Salivary Melatonin Responses

Click name to view affiliation

Lara A. Carlson
Search for other papers by Lara A. Carlson in
Current site
Google Scholar
PubMed
Close
,
Kaylee M. Pobocik
Search for other papers by Kaylee M. Pobocik in
Current site
Google Scholar
PubMed
Close
,
Michael A. Lawrence
Search for other papers by Michael A. Lawrence in
Current site
Google Scholar
PubMed
Close
,
Daniel A. Brazeau
Search for other papers by Daniel A. Brazeau in
Current site
Google Scholar
PubMed
Close
, and
Alexander J. Koch
Search for other papers by Alexander J. Koch in
Current site
Google Scholar
PubMed
Close
Restricted access

Background: Sleep deprivation negatively affects cognition, pain, mood, metabolism, and immunity, which can reduce athletic performance. Melatonin facilitates sleepiness and may be affected by the proximity of exercise to sleep. Purpose: To evaluate the influence of exercise time of day on salivary melatonin (s-melatonin) responses. Methods: Twelve regularly exercising men (age 20.75 [0.62] y, height 1.75 [0.04] m, mass 73.63 [10.43] kg, and maximal oxygen consumption 57.72 [6.11] mL/kg/min) participated in a randomized, crossover design. Subjects completed 3 protocols—morning exercise (09:00 h), afternoon exercise (16:00 h), and no exercise (CON)—at least 5 d apart. Exercise sessions consisted of 30 min of steady-state running at 75% of maximal oxygen consumption. Saliva was collected via passive drool at 20:00, 22:00, and 03:00 h following all sessions. Results: Repeated-measures analysis of variance revealed significant time (P = .001) and condition (P = .026) effects for melatonin. Levels of s-melatonin were significantly increased at 03:00 h compared with 20:00 and 22:00 h for all conditions. Post hoc analyses revealed that s-melatonin at 22:00 h was significantly higher after morning exercise (16.5 [7.5] pg/mL) compared with afternoon exercise (13.7 [6.1] pg/mL) sessions (P = .03), whereas neither exercise condition significantly differed from the control (P > .05). Conclusions: It appears that exercising in the afternoon may blunt melatonin secretion compared with morning exercise. If sleep is an issue, morning exercise may be preferable to afternoon exercise.

Carlson, Pobocik, and Lawrence are with the Dept of Physical Therapy, and Brazeau, the Dept of Biomedical Science, University of New England, Portland, ME. Carlson is also with the Center for Excellence in Neurosciences, University of New England, Biddeford, ME. Koch is with the College of Health Sciences, Lenoir-Rhyne University, Hickory, NC.

Carlson (lcarlson@une.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hirshkowitz M. How does exercise affect sleep duration and quality? Ask the Expert. 2013. https://www.sleepfoundation.org/ask-the-expert/how-does-exercise-affect-sleep-duration-and-quality. Accessed June 25, 2018.

    • Search Google Scholar
    • Export Citation
  • 2.

    Kashefi Z, Mirzaei B, Shabani R. The effects of eight weeks selected aerobic exercises on sleep quality of middle-aged non-athlete females. Iran Red Crescent Med J. 2014;16(7):16408. PubMed ID: 25237565 doi:10.5812/ircmj.16408

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Marrin K, Drust B, Gregson W, Morris CJ, Chester N, Atkinson G. Diurnal variation in the salivary melatonin responses to exercise: relation to exercise-mediated tachycardia. Eur J Appl Physiol. 2011;111(11):27072714. PubMed ID: 21399961 doi:10.1007/s00421-011-1890-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Atkinson G, Davenne D. Relationships between sleep, physical activity and human health. Physiol Behav. 2007;90(2–3):229235. doi:10.1016/j.physbeh.2006.09.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Horne JA, Staff LH. Exercise and sleep: body-heating effects. Sleep. 1983;6(1):3646. PubMed ID: 6844796 doi:10.1093/sleep/6.1.36

  • 6.

    Escames G, Ozturk G, Bano-Otalora B, et al. Exercise and melatonin in humans: reciprocal benefits. J Pineal Res. 2012;52(1):111. PubMed ID: 21848991 doi:10.1111/j.1600-079X.2011.00924.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Knight JA, Thompson S, Raboud JM, Hoffman BR. Light and exercise and melatonin production in women. Am J Epidemiol. 2005;162(11):11141122. PubMed ID: 16207802 doi:10.1093/aje/kwi327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev. 2005;9(1):1124. PubMed ID: 15649735 doi:10.1016/j.smrv.2004.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cardinali DP, Pevet P. Basic aspects of melatonin action. Sleep Med Rev. 1998;2(3):175190. PubMed ID: 15310500 doi:10.1016/S1087-0792(98)90020-X

  • 10.

    Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25(3–4):177195. doi:10.1016/j.yfrne.2004.08.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cajochen C, Krauchi K, Wirz-Justice A. Role of melatonin in the regulation of human circadian rhythms and sleep. J Neuroendocrinol. 2003;15(4):432437. PubMed ID: 12622846 doi:10.1046/j.1365-2826.2003.00989.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gong H, Szymusiak R, King J, Steininger T, McGinty D. Sleep-related c-Fos protein expression in the preoptic hypothalamus: effects of ambient warming. Am J Physiol Regul Integr Comp Physiol. 2000;279(6):R20792088. PubMed ID: 11080072 doi:10.1152/ajpregu.2000.279.6.R2079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol. 2003;284(3):R714R724. PubMed ID: 12571075 doi:10.1152/ajpregu.00355.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Van Reeth O. Sleep and circadian disturbances in shift work: strategies for their management. Horm Res. 1998;49(3–4):158162.

  • 15.

    Atkinson G, Edwards B, Reilly T, Waterhouse J. Exercise as a synchroniser of human circadian rhythms: an update and discussion of the methodological problems. Eur J Appl Physiol. 2007;99(4):331341. PubMed ID: 17165050 doi:10.1007/s00421-006-0361-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA. Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am J Physiol Regul Integr Comp Physiol. 2004;286(6):R1077R1084. PubMed ID: 15031136 doi:10.1152/ajpregu.00397.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Grubbs FE. Sample criteria for testing outlying observations. Am Math Stat. 1950;21:2758. doi:10.1214/aoms/1177729885

  • 18.

    Eastman CI, Hoese EK, Youngstedt SD, Liu L. Phase-shifting human circadian rhythms with exercise during the night shift. Physiol Behav. 1995;58(6):12871291. PubMed ID: 8623034 doi:10.1016/0031-9384(95)02031-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Monteleone P, Maj M, Fusco M, Orazzo C, Kemali D. Physical exercise at night blunts the nocturnal increase of plasma melatonin levels in healthy humans. Life Sci. 1990;47(22):19891995. PubMed ID: 2273939 doi:10.1016/0024-3205(90)90432-Q

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5313 1098 52
Full Text Views 111 22 2
PDF Downloads 66 12 0