Dose-Response Relationship of Weekly Resistance-Training Volume and Frequency on Muscular Adaptations in Trained Men

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Samuel R. Heaselgrave
Search for other papers by Samuel R. Heaselgrave in
Current site
Google Scholar
PubMed
Close
,
Joe Blacker
Search for other papers by Joe Blacker in
Current site
Google Scholar
PubMed
Close
,
Benoit Smeuninx
Search for other papers by Benoit Smeuninx in
Current site
Google Scholar
PubMed
Close
,
James McKendry
Search for other papers by James McKendry in
Current site
Google Scholar
PubMed
Close
, and
Leigh Breen
Search for other papers by Leigh Breen in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: A linear dose–response relationship between resistance-training (RT) volume and hypertrophy/strength has been proposed when ≤10 to 12 weekly sets are implemented. The present study aimed to understand the impact of low to high weekly RT volume on muscular adaptations in trained young men over 6 wk of RT. Methods: RT-experienced men (N = 49) were randomly allocated to a low (LOW; n = 17), moderate (MOD; n = 15), or high (HIGH, n = 17) -volume group, performing 9, 18, or 27 weekly sets of biceps RT, respectively, for 6 wk. RT was performed once (LOW) or twice (MOD and HIGH) weekly. Postexercise protein intake was controlled with both dietary intake and external training volume recorded. Before and after RT, assessments of biceps muscle thickness (MT) via ultrasound, isometric, and 1-repetition-maximum (1RM) strength were performed. Data were analyzed using 1-way analysis of variance (baseline characteristics) and repeated-measures analysis of variance (within- and between-groups pre-to-post change). Results: MT significantly increased in all groups (4.3% [7.9%], 9.5% [11.8%], and 5.4% [6.3%] for LOW, MOD, and HIGH, respectively; P < .05), as did 1RM strength (P ≤ .001 for all). Isometric strength increased significantly in HIGH only (8.5% [15.1%], P < .05). There were no significant differences between groups in MT or indices of strength. However, effect-size estimates revealed that the magnitude of response was “moderate to large” for MOD and HIGH when compared with LOW. Conclusion: The findings demonstrate that 9 weekly sets of biceps-focused RT, performed in 1 weekly session, are sufficient to increase MT, whereas 18–27 sets performed over 2 weekly sessions may confer greater strength increases.

The authors are with the School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom.

Breen (L.breen@bham.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006;84(3):475482. PubMed ID: 16960159 doi:10.1093/ajcn/84.3.475

  • 2.

    Terzis G, Georgiadis G, Stratakos G, et al. Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol. 2008;102(2):145152. PubMed ID: 17874120 doi:10.1007/s00421-007-0564-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Schoenfeld BJ. The mechanisms of muscle hypertrophy and their application to resistance training. J Strength Cond Res. 2010;24(10):28572872. PubMed ID: 20847704 doi:10.1519/JSC.0b013e3181e840f3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dankel SJ, Counts BR, Barnett BE, Buckner SL, Abe T, Loenneke JP. Muscle adaptations following 21 consecutive days of strength test familiarization compared with traditional training. Muscle Nerve. 2017;56(2):307314. PubMed ID: 27875635 doi:10.1002/mus.25488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Wernbom M, Augustsson J, Thomee R. The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 2007;37(3):225264. PubMed ID: 17326698 doi:10.2165/00007256-200737030-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Schoenfeld BJ, Ogborn D, Krieger JW. Dose-response relationship between weekly resistance training volume and increases in muscle mass: a systematic review and meta-analysis. J Sports Sci. 2017;35(11):10731082. PubMed ID: 27433992 doi:10.1080/02640414.2016.1210197

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Schoenfeld BJ, Ogborn D, Krieger JW. Effects of resistance training frequency on measures of muscle hypertrophy: a systematic review and meta-analysis. Sports Med. 2016;46(11):16891697. PubMed ID: 27102172 doi:10.1007/s40279-016-0543-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    McKendry J, Perez-Lopez A, McLeod M, et al. Short inter-set rest blunts resistance exercise-induced increases in myofibrillar protein synthesis and intracellular signalling in young males. Exp Physiol. 2016;101(7):866882. PubMed ID: 27126459 doi:10.1113/EP085647

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ato S, Makanae Y, Kido K, Fujita S. Contraction mode itself does not determine the level of mTORC1 activity in rat skeletal muscle. Physiol Rep. 2016;4(19):12976. doi:10.14814/phy2.12976

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Burd NA, Andrews RJ, West DWD, et al. Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol. 2012;590(2):351362. PubMed ID: 22106173 doi:10.1113/jphysiol.2011.221200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bird SP, Tarpenning KM, Marino FE. Designing resistance training programmes to enhance muscular fitness: a review of the acute programme variables. Sports Med. 2005;35(10):841851. PubMed ID: 16180944 doi:10.2165/00007256-200535100-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Figueiredo VC, de Salles BF, Trajano GS. Volume for muscle hypertrophy and health outcomes: the most effective variable in resistance training. Sports Med. 2018;48(3):499505. PubMed ID: 29022275 doi:10.1007/s40279-017-0793-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Ralston GW, Kilgore L, Wyatt FB, Baker JS. The effect of weekly set volume on strength gain: a meta-analysis. Sports Med. 2017;47(12):25852601. PubMed ID: 28755103 doi:10.1007/s40279-017-0762-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Grgic J, Schoenfeld BJ, Davies TB, Lazinica B, Krieger JW, Pedisic Z. Effect of resistance training frequency on gains in muscular strength: a systematic review and meta-analysis. Sports Med. 2018;48(5):12071220. PubMed ID: 29470825 doi:10.1007/s40279-018-0872-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mitchell CJ, Churchward-Venne TA, West DW, et al. Resistance exercise load does not determine training-mediated hypertrophic gains in young men. J Appl Physiol. 2012;113(1):7177. doi:10.1152/japplphysiol.00307.2012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Radaelli R, Botton CE, Wilhelm EN, et al. Time course of low- and high-volume strength training on neuromuscular adaptations and muscle quality in older women. Age. 2014;36(2):881892. doi:10.1007/s11357-013-9611-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ostrowski KJ, Wilson GJ, Weatherby R, Murphy PW, Lyttle AD. The effect of weight training volume on hormonal output and muscular size and function. J Strength Cond Res. 1997;11(3):148154.

    • Search Google Scholar
    • Export Citation
  • 18.

    Carroll TJ, Riek S, Carson RG. Neural adaptations to resistance training—implications for movement control. Sports Med. 2001;31(12):829840. PubMed ID: 11665911 doi:10.2165/00007256-200131120-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Damas F, Phillips S, Vechin FC, Ugrinowitsch C. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy. Sports Med. 2015;45(6):801807. PubMed ID: 25739559 doi:10.1007/s40279-015-0320-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Tang JE, Perco JG, Moore DR, Wilkinson SB, Phillips SM. Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol. 2008;294(1):R172178. PubMed ID: 18032468 doi:10.1152/ajpregu.00636.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Wilkinson SB, Phillips SM, Atherton PJ, et al. Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle. J Physiol. 2008;586(15):37013717. PubMed ID: 18556367 doi:10.1113/jphysiol.2008.153916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Zourdos MC, Klemp A, Dolan C, et al. Novel resistance training-specific rating of perceived exertion scale measuring repetitions in reserve. J Strength Cond Res. 2016;30(1):267275. PubMed ID: 26049792 doi:10.1519/JSC.0000000000001049

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buckley JP, Borg GA. Borg’s scales in strength training; from theory to practice in young and older adults. Appl Physiol Nutr Metab. 2011;36(5):682692. PubMed ID: 21977913 doi:10.1139/h11-078

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Grgic J, Schoenfeld BJ, Skrepnik M, Davies TB, Mikulic P. Effects of rest interval duration in resistance training on measures of muscular strength: a systematic review. Sports Med. 2018;48(1):137151. PubMed ID: 28933024 doi:10.1007/s40279-017-0788-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Macnaughton LS, Wardle SL, Witard OC, et al. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol Rep. 2016;4(15):e12893. doi:10.14814/phy2.12893

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Grgic J, Trexler ET, Lazinica B, Pedisic Z. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis. J Int Soc Sports Nutr. 2018;15:11. PubMed ID: 29527137 doi:10.1186/s12970-018-0216-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E. The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol. 2010;110(4):835843. PubMed ID: 20617335 doi:10.1007/s00421-010-1527-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Burd NA, Holwerda AM, Selby KC, et al. Resistance exercise volume affects myofibrillar protein synthesis and anabolic signalling molecule phosphorylation in young men. J Physiol. 2010;588(pt 16):31193130. PubMed ID: 20581041 doi:10.1113/jphysiol.2010.192856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Tibana RA, Franco OL, Cunha GV, et al. The effects of resistance training volume on skeletal muscle proteome. Int J Exerc Sci. 2017;10(7):10511066. PubMed ID: 29170706

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Radaelli R, Fleck SJ, Leite T, et al. Dose-response of 1, 3, and 5 sets of resistance exercise on strength, local muscular endurance, and hypertrophy. J Strength Cond Res. 2015;29(5):13491358. PubMed ID: 25546444 doi:10.1519/JSC.0000000000000758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kim PL, Staron RS, Phillips SM. Fasted-state skeletal muscle protein synthesis after resistance exercise is altered with training. J Physiol. 2005;568(pt 1):283290. PubMed ID: 16051622 doi:10.1113/jphysiol.2005.093708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gonzalez AM, Hoffman JR, Townsend JR, et al. Association between myosin heavy chain protein isoforms and intramuscular anabolic signaling following resistance exercise in trained men. Physiol Rep. 2015;3(1):e12268. doi:10.14814/phy2.12268

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Marshall PW, McEwen M, Robbins DW. Strength and neuromuscular adaptation following one, four, and eight sets of high intensity resistance exercise in trained males. Eur J Appl Physiol. 2011;111(12):30073016. PubMed ID: 21451937 doi:10.1007/s00421-011-1944-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mattocks KT, Buckner SL, Jessee MB, Dankel SJ, Mouser JG, Loenneke JP. Practicing the test produces strength equivalent to higher volume training. Med Sci Sports Exerc. 2017;49(9):19451954. PubMed ID: 28463902 doi:10.1249/MSS.0000000000001300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    La Scala Teixeira CV, Pereira EFM, Evangelista AL, et al. Is the weekly sets volume training performed by trained subjects in accordance with training recommendations guidelines for muscle hypertrophy? Motriz: Rev Educ Fís. 2018;24(2):e101815. doi:10.1590/s1980-6574201800020011

    • Search Google Scholar
    • Export Citation
  • 36.

    Morton RW, Murphy KT, McKellar SR, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br J Sports Med. 2018;52(6):376384. PubMed ID: 28698222

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    DeFreitas JM, Beck TW, Stock MS, Dillon MA, Kasishke PR 2nd. An examination of the time course of training-induced skeletal muscle hypertrophy. Eur J Appl Physiol. 2011;111(11):27852790. PubMed ID: 21409401 doi:10.1007/s00421-011-1905-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Baroni BM, Geremia JM, Rodrigues R, De Azevedo Franke R, Karamanidis K, Vaz MA. Muscle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle Nerve. 2013;48(4):498506. PubMed ID: 23852989 doi:10.1002/mus.23785

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Seynnes OR, de Boer M, Narici MV. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol. 2007;102(1):368373. doi:10.1152/japplphysiol.00789.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Brook MS, Wilkinson DJ, Mitchell WK, et al. Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling. FASEB J. 2015;29(11):44854496. PubMed ID: 26169934 doi:10.1096/fj.15-273755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Radaelli R, Botton CE, Wilhelm EN, et al. Low- and high-volume strength training induces similar neuromuscular improvements in muscle quality in elderly women. Exp Gerontol. 2013;48(8):710716. PubMed ID: 23603619 doi:10.1016/j.exger.2013.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8014 2871 115
Full Text Views 203 46 14
PDF Downloads 164 68 16