Association of Daily Workload, Wellness, and Injury and Illness During Tours in International Cricketers

Click name to view affiliation

Robert Ahmun
Search for other papers by Robert Ahmun in
Current site
Google Scholar
PubMed
Close
,
Steve McCaig
Search for other papers by Steve McCaig in
Current site
Google Scholar
PubMed
Close
,
Jamie Tallent
Search for other papers by Jamie Tallent in
Current site
Google Scholar
PubMed
Close
,
Sean Williams
Search for other papers by Sean Williams in
Current site
Google Scholar
PubMed
Close
, and
Tim Gabbett
Search for other papers by Tim Gabbett in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine the relationship between player internal workloads, daily wellness monitoring, and injury and illness in a group of elite adolescent cricketers during overseas competitions. Methods: A total of 39 male international adolescent cricketers (17.5 [0.8] y) took part in the study. Data were collected over 5 tours across a 3-y period (2014–2016). Measures of wellness were recorded and daily training loads were calculated using session rating of perceived exertion. The injury and illness status of each member of the squad was recorded daily. Acute and chronic workloads were calculated using 3-d and 14-d moving averages. Acute workloads, chronic workloads, and acute chronic workload ratios were independently modeled as fixed effects predictor variables. Results: In the subsequent week, a high 3-d workload was significantly associated with an increased risk of injury (relative risk = 2.51; CI = 1.70–3.70). Similarly, a high 14-d workload was also associated with an increased risk of injury (relative risk = 1.48; CI = 1.01–2.70). Individual differences in the load–injury relationship were also found. No clear relationship between the acute chronic workload ratios and injury risk was found, but high chronic workloads combined with high or low acute chronic workload ratios showed an increased probability of injury compared with moderate chronic workloads. There were also trends for sleep quality and cold symptoms worsening the week before an injury occurred. Conclusion: Although there is significant individual variation, short-term high workloads and change in wellness status appear to be associated with injury risk.

Ahmun and McCaig are with England and Wales Cricket Board, Loughborough, United Kingdom. McCaig is also with the English Inst of Sport, Loughborough University, Loughborough, United Kingdom, and the School of Sports Science, Cardiff Metropolitan University, Cardiff, United Kingdom. Tallent is with the School of Sport Health and Applied Science, St Mary’s University, Twickenham, United Kingdom. Williams is with the Dept for Health, University of Bath, Bath, United Kingdom. Gabbett is with Gabbett Performance Solutions, Brisbane, Australia, and the Inst for Resilient Regions, University of Southern Queensland, Ipswich, Australia.

Ahmun (rob.ahmun@ecb.co.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Hagglund M, Walden M, Magnusson H, Kristenson K, Bengtsson H, Ekstrand J. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738742. PubMed ID: 23645832 doi:10.1136/bjsports-2013-092215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Jones CM, Griffiths PC, Mellalieu SD. Training load and fatigue marker associations with injury and illness: a systematic review of longitudinal studies. Sports Med. 2017;47(5):943974. PubMed ID: 27677917 doi:10.1007/s40279-016-0619-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Vickery W, Dascombe B, Duffield R. The association between internal and external measures of training load in batsmen and medium-fast bowlers during net-based cricket training. Int J Sports Physiol Perform. 2017;12(2):247253. PubMed ID: 27249106 doi:10.1123/ijspp.2015-0770

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Petersen CJ, Pyne D, Dawson B, Portus M, Kellett A. Movement patterns in cricket vary by both position and game format. J Sports Sci. 2010;28(1):4552. PubMed ID: 20013461 doi:10.1080/02640410903348665

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dennis RJ, Finch CF, Farhart PJ. Is bowling workload a risk factor for injury to Australian junior cricket fast bowlers? Br J Sports Med. 2005;39(11):843846. PubMed ID: 16244195 doi:10.1136/bjsm.2005.018515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Orchard JW, Blanch P, Paoloni J, et al. Cricket fast bowling workload patterns as risk factors for tendon, muscle, bone and joint injuries. Br J Sports Med. 2015;49(16):10641068. PubMed ID: 25755276 doi:10.1136/bjsports-2014-093683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Tallent J, Higgins M, Parker N, et al. Quantification of bowling workload and changes in cognitive function in elite fast bowlers in training compared with Twenty20 cricket. J Sports Med Phys Fitness. 2019;59(1):3541. doi:10.23736/S0022-4707.17.07940-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014;48(8):708712. PubMed ID: 23962877 doi:10.1136/bjsports-2013-092524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    McNamara DJ, Gabbett TJ, Naughton G, Farhart P, Chapman P. Training and competition workloads and fatigue responses of elite junior cricket players. Int J Sports Physiol Perform. 2013;8(5):517526. PubMed ID: 23348049 doi:10.1123/ijspp.8.5.517

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Frx AC, Kraemer WJ, Stone MH, Koziris LP, Thrush JT, Fleck SJ. Relationships between serum testosterone, cortisol, and weightlifting performance. J Strength Cond Res. 2000;14(3):338343. doi:10.1519/00124278-200008000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Carling C, McCall A, Le Gall F, Dupont G. The impact of short periods of match congestion on injury risk and patterns in an elite football club. Br J Sports Med. 2016;50(12):764768. PubMed ID: 26682867 doi:10.1136/bjsports-2015-095501

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Dellal A, Lago-Penas C, Rey E, Chamari K, Orhant E. The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team. Br J Sports Med. 2015;49(6):390394. PubMed ID: 23422422 doi:10.1136/bjsports-2012-091290

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Winter EM, Maughan RJ. Requirements for ethics approvals. J Sports Sci. 2009;27(10):985985. PubMed ID: 19847681 doi:10.1080/02640410903178344

  • 17.

    McLean BD, Coutts AJ, Kelly V, McGuigan MR, Cormack SJ. Neuromuscular, endocrine, and perceptual fatigue responses during different length between-match microcycles in professional rugby league players. Int J Sports Physiol Perform. 2010;5(3):367383. PubMed ID: 20861526 doi:10.1123/ijspp.5.3.367

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Orchard JW, Ranson C, Olivier B, et al. International consensus statement on injury surveillance in cricket: a 2016 update. Br J Sports Med. 2016;50(20):12451251. PubMed ID: 27281775 doi:10.1136/bjsports-2016-096125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rae K, Orchard J. The Orchard Sports Injury Classification System (OSICS) version 10. Clin J Sport Med. 2007;17(3):201204. PubMed ID: 17513912 doi:10.1097/JSM.0b013e318059b536

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Williams S, West S, Cross MJ, Stokes KA. Better way to determine the acute:chronic workload ratio? Br J Sports Med. 2016;51(3):209210. PubMed ID: 27650255 doi:10.1136/bjsports-2016-096589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Murray NB, Gabbett TJ, Townshend AD, Blanch P. Calculating acute:chronic workload ratios using exponentially weighted moving averages provides a more sensitive indicator of injury likelihood than rolling averages. Br J Sports Med. 2017;51(9):749754. PubMed ID: 28003238 doi:10.1136/bjsports-2016-097152

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lolli L, Batterham AM, Hawkins R, et al. Mathematical coupling causes spurious correlation within the conventional acute-to-chronic workload ratio calculations [published online ahead of print November 3, 2017]. Br J Sports Med. doi:10.1136/bjsports-2017-098110

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG, Marshall SW, Quarrie KL, Hume PA. Risk factors and risk statistics for sports injuries. Clin J Sport Med. 2007;17(3):208210. PubMed ID: 17513914 doi:10.1097/JSM.0b013e3180592a68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG. A spreadsheet for deriving a confidence interval, mechanistic inference and clinical inference from a P value. Sportscience. 2007;11:1620.

    • Search Google Scholar
    • Export Citation
  • 27.

    Cross MJ, Williams S, Trewartha G, Kemp SP, Stokes KA. The influence of in-season training loads on injury risk in professional rugby union. Int J Sports Physiol Perform. 2016;11(3):350355. PubMed ID: 26309331 doi:10.1123/ijspp.2015-0187

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Malone JJ, Di Michele R, Morgans R, Burgess D, Morton JP, Drust B. Seasonal training-load quantification in elite English premier league soccer players. Int J Sports Physiol Perform. 2015;10(4):489497. PubMed ID: 25393111 doi:10.1123/ijspp.2014-0352

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Malone S, Hughes B, Doran DA, Collins K, Gabbett TJ. Can the workload–injury relationship be moderated by improved strength, speed and repeated-sprint qualities? J Sci Med Sport.  2019;22(1):2934. doi:10.1016/j.jsams.2018.01.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rogalski B, Dawson B, Heasman J, Gabbett TJ. Training and game loads and injury risk in elite Australian footballers. J Sci Med Sport. 2013;16(6):499503. PubMed ID: 23333045 doi:10.1016/j.jsams.2012.12.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Warren A, Williams S, McCaig S, Trewartha G. High acute:chronic workloads are associated with injury in England & Wales Cricket Board Development Programme fast bowlers. J Sci Med Sport. 2018;21(1):4045. PubMed ID: 28757380 doi:10.1016/j.jsams.2017.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50(4):231236. doi:10.1136/bjsports-2015-094817

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Carey DL, Blanch P, Ong KL, Crossley KM, Crow J, Morris ME. Training loads and injury risk in Australian football-differing acute: chronic workload ratios influence match injury risk. Br J Sports Med. 2017;51(16):12151220. PubMed ID: 27789430 doi:10.1136/bjsports-2016-096309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Coutts AJ, Wallace LK, Slattery KM. Monitoring changes in performance, physiology, biochemistry, and psychology during overreaching and recovery in triathletes. Int J Sports Med. 2007;28(2):125134. PubMed ID: 16835823 doi:10.1055/s-2006-924146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Coutts AJ, Reaburn P. Monitoring changes in rugby league players’ perceived stress and recovery during intensified training. Percept Mot Skills. 2008;106(3):904916. PubMed ID: 18712214 doi:10.2466/pms.106.3.904-916

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Thornton HR, Delaney JA, Duthie GM, et al. Predicting self-reported illness for professional team-sport athletes. Int J Sports Physiol Perform. 2016;11(4):543550. PubMed ID: 26390410 doi:10.1123/ijspp.2015-0330

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    von Rosen P, Frohm A, Kottorp A, Friden C, Heijne A. Multiple factors explain injury risk in adolescent elite athletes: applying a biopsychosocial perspective. Scand J Med Sci Sports. 2017;27(12):20592069. PubMed ID: 28207969 doi:10.1111/sms.12855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Diefenbach MA, Weinstein ND, O’Reilly J. Scales for assessing perceptions of health hazard susceptibility. Health Educ Res. 1993;8(2):181192. PubMed ID: 10148827 doi:10.1093/her/8.2.181

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Vgontzas AN, Zoumakis E, Bixler EO, et al. Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab. 2004;89(5):21192126. PubMed ID: 15126529 doi:10.1210/jc.2003-031562

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3962 861 17
Full Text Views 108 23 3
PDF Downloads 79 8 0