Presleep Casein Protein Ingestion: Acceleration of Functional Recovery in Professional Soccer Players

Click name to view affiliation

William Abbott
Search for other papers by William Abbott in
Current site
Google Scholar
PubMed
Close
,
Adam Brett
Search for other papers by Adam Brett in
Current site
Google Scholar
PubMed
Close
,
Emma Cockburn
Search for other papers by Emma Cockburn in
Current site
Google Scholar
PubMed
Close
, and
Tom Clifford
Search for other papers by Tom Clifford in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To examine whether consuming casein protein (CP) before sleep would enhance recovery after a nighttime soccer match in professional players. Methods: In a randomized, crossover design, 10 professional soccer players from the reserve squad of a team in the highest tier of English soccer consumed 40 g of CP or 40 g of carbohydrates (CON) 30 min presleep after a soccer match (kick off: 7 PM). To assess recovery, countermovement-jump height, reactive strength index, muscle soreness, and the adapted Brief Assessment of Mood (BAM+) Questionnaire were measured before and 12, 36, and 60 h after each match. Dietary intake across the testing period was also recorded. Results: There were unclear differences in external load in the matches and dietary intake between CON and CP. Casein protein had a most likely and likely beneficial effect on countermovement-jump recovery at 12 and 36 h postmatch (CP −1.6; ±1.2% vs CON −6.6; ±1.7%; −4.1; ±2.3% vs −0.4; ±1.1%, respectively). Reactive strength index recovery was most likely enhanced with CP at 12 and 36 h postmatch, and muscle soreness, as measured with a visual analog scale (in millimeters), was most likely greater in CON versus CP at 12 h postmatch (72; ±17 vs 42; ±20 mm). BAM+ was possibly lower in CON at 36 h postmatch but unaffected at other time points. Conclusions: Presleep CP accelerates functional recovery in professional soccer players and, therefore, provides a practical means of attenuating performance deficits in the days after a match.

Abbott is with the School of Sport and Service Management, Brighton University, Brighton, United Kingdom. Abbott and Brett are with Brighton and Hove Albion FC, American Express Elite Performance Centre, Lancing, United Kingdom. Cockburn and Clifford are with the Inst of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom. Clifford is also with the Faculty of Medical Sciences, School of Biomedicine, Newcastle University.

Clifford (tom.clifford@ncl.ac.uk) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Silva JR, Rumpf MC, Hertzog M, et al. Acute and residual soccer match-related fatigue: a systematic review and meta-analysis. Sports Med. 2018;48:539583. PubMed ID: 29098658 doi:10.1007/s40279-017-0798-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Nédélec M, McCall A, Carling C, et al. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Nédélec M, McCall A, Carling C, et al. Recovery in soccer: part II—recovery strategies. Sports Med. 2013;43(1):922. PubMed ID: 23315753 doi:10.1007/s40279-012-0002-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Ranchordas MK, Dawson JT, Russell M. Practical nutritional recovery strategies for elite soccer players when limited time separates repeated matches. J Int Soc Sport Nutr. 2017;14(1):35. doi:10.1186/s12970-017-0193-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Oliveira CC, Ferreira D, Caetano C, et al. Nutrition and supplementation in soccer. Sports. 2017;5(2):28. doi:10.3390/sports5020028

  • 6.

    Res PT. Recovery nutrition for soccer players. Sports Sci Exchange. 2014;27(129):15.

  • 7.

    Pasiakos SM, Lieberman HR, McLellan TM. Effects of protein supplements on muscle damage, soreness and recovery of muscle function and physical performance: a systematic review. Sports Med. 2014;44(5):655670. PubMed ID: 24435468 doi:10.1007/s40279-013-0137-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rowlands DS, Nelson AR, Raymond F, et al. Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiol Genomics. 2015;48(1):2132. PubMed ID: 26508702 doi:10.1152/physiolgenomics.00068.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Davies RW, Carson BP, Jakeman PM. The effect of whey protein supplementation on the temporal recovery of muscle function following resistance training: a systematic review and meta-analysis. Nutrients. 2018;10(2):221. doi:10.3390/nu10020221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Trommelen J, Kouw IW, Holwerda AM, et al. Presleep dietary protein-derived amino acids are incorporated in myofibrillar protein during post-exercise overnight recovery. Am J Physiol Endocrinol Metab. 2018;314(5):457467. doi:10.1152/ajpendo.00273.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Beelen M, Tieland M, Gijsen AP, et al. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. J Nutr. 2018;138(11):21982204. doi:10.3945/jn.108.092924

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Res PT, Groen B, Pennings B, et al. Protein ingestion before sleep improves postexercise overnight recovery. Med Sci Sports Exerc. 2012;44(8):15601569. PubMed ID: 22330017 doi:10.1249/MSS.0b013e31824cc363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Trommelen J, van Loon LJC. Pre-sleep protein ingestion to improve the skeletal muscle adaptive response to exercise training. Nutrients. 2016;8(12):763. doi:10.3390/nu8120763

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Trommelen J, Holwerda AM, Kouw IW, et al. Resistance exercise augments postprandial overnight muscle protein synthesis rates. Med Sci Sports Exerc. 2016;48(12):25172525. PubMed ID: 27643743 doi:10.1249/MSS.0000000000001045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Holwerda AM, Kouw IW, Trommelen J, et al. Physical activity performed in the evening increases the overnight muscle protein synthetic response to presleep protein ingestion in older men. J Nutr. 2016;146(7):13071314. PubMed ID: 27281811 doi:10.3945/jn.116.230086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kouw IW, Holwerda AM, Trommelen J, et al. Protein ingestion before sleep increases overnight muscle protein synthesis rates in healthy older men: a randomized controlled trial. J Nutr. 2017;147(12):22522261. PubMed ID: 28855419 doi:10.3945/jn.117.254532

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Clifford T, Abbott W, Kwiecien SY, Howatson G, McHugh MP. Cryotherapy re-invented: application of phase change material for recovery in elite soccer. Int J Sports Physiol Perform. 2018;13(5):584589. doi:10.1123/ijspp.2017-0334

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Clifford T, Allerton DM, Brown MA, et al. Minimal muscle damage after a marathon and no influence of beetroot juice on inflammation and recovery. Appl Phyiol Nutr Metab. 2017;42(3):263270. doi:10.1139/apnm-2016-0525

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Cockburn E, Stevenson E, Hayes PR, Robson-Ansley P, Howatson G. Effect of milk-based carbohydrate-protein supplement timing on the attenuation of exercise-induced muscle damage. Appl Phyiol Nutr Metab. 2010;35(3):270277. doi:10.1139/H10-017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Shearer DA, Sparkes W, Northeast J, Cunningham DJ, Cook CJ, Kilduff LP. Measuring recovery: an adapted Brief Assessment of Mood (BAM+) compared to biochemical and power output alterations. J Sci Med Sport. 2017;20(5):512517. PubMed ID: 27751660 doi:10.1016/j.jsams.2016.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2016;1(1):5057. doi:10.1123/ijspp.1.1.50

  • 22.

    Hopkins WG. Spreadsheets for analysis of controlled trials, crossovers and time series. Sportscience. 2017;21:14. www.sportsci.org/2017/wghxls.htm.

    • Search Google Scholar
    • Export Citation
  • 23.

    Bucheit M, Morgan W, Wallace J, Bode M, Poulos N. Physiological, psychometric, and performance effects of the Christmas break in Australian Football. Int J Sports Physiol Perform. 2015;10:120123. doi:10.1123/ijspp.2014-0082

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG. A scale of magnitude for effect statistics. In: A New View of Statistics. Melbourne, Australia: Will G. Hopkins; 2002:502.

  • 25.

    Crameri RM, Aagaard P, Qvortrup K, Langberg H, Olesen J, Kjær M. Myofibre damage in human skeletal muscle: effects of electrical stimulation versus voluntary contraction. J Physiol. 2007;583(1):365380. doi:10.1113/jphysiol.2007.128827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Peake JM, Neubauer O, Della Gatta PA, Nosaka K. Muscle damage and inflammation during recovery from exercise. J Appl Physiol. 2016;122(3):559570. PubMed ID: 28035017 doi:10.1152/japplphysiol.00971.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Holm L, Rahbek SK, Farup J, Vendelbo MH, Vissing K. Contraction mode and whey protein intake affect the synthesis rate of intramuscular connective tissue. Muscle Nerve. 2017;55(1):128130. PubMed ID: 27603578 doi:10.1002/mus.25398

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    West DW, Abou Sawan S, Mazzulla M, Williamson E, Moore DR. Whey protein supplementation enhances whole body protein metabolism and performance recovery after resistance exercise: a double-blind crossover study. Nutrients. 2017;9(7):735. doi:10.3390/nu9070735

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Joy JM, Vogel RM, Broughton KS, et al. Daytime and nighttime casein supplements similarly increase muscle size and strength in response to resistance training earlier in the day: a preliminary investigation. J Int Soc Sports Nutr. 2018;15(1):24. PubMed ID: 29764464 doi:10.1186/s12970-018-0228-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Snijders T, Res PT, Smeets JS, et al. Protein ingestion before sleep increases muscle mass and strength gains during prolonged resistance-type exercise training in healthy young men. J Nutr. 2015;145(6):11781184. PubMed ID: 25926415 doi:10.3945/jn.114.208371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7583 1996 151
Full Text Views 174 51 2
PDF Downloads 129 43 4