Metabolic Power: A Step in the Right Direction for Team Sports

Click name to view affiliation

Ted Polglaze
Search for other papers by Ted Polglaze in
Current site
Google Scholar
PubMed
Close
and
Matthias W. Hoppe
Search for other papers by Matthias W. Hoppe in
Current site
Google Scholar
PubMed
Close
Restricted access

The ability of the “metabolic power” model to assess the demands of team-sport activity has been the subject of some interest—and much controversy—in team-sport research. Because the cost of acceleration depends on the initial speed and the costs of acceleration and deceleration are not “equal and opposite,” changes in speed must be accounted for when evaluating variable-speed locomotion. The purpose of this commentary is to address some of the misconceptions regarding “metabolic power,” acknowledge its limitations, and highlight some of the benefits that energetic analysis offers over alternative approaches to quantifying the demands of team sports.

Polglaze is with Exercise and Sport Science, School of Human Sciences, The University of Western Australia, Crawley, WA, Australia. Hoppe is with the Dept of Movement and Training Science, University of Wuppertal, Wuppertal, Germany; and the Dept of Orthopedic, Trauma, Hand, and Neuro Surgery, Klinikum Osnabrück GmbH, Osnabrück, Germany.

Polglaze (ted.polglaze@gmail.com) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Brown D, Dwyer D, Robertson S, Gastin P. Metabolic power method: underestimation of energy expenditure in field sport movements using a global positioning system tracking system. Int J Sports Physiol Perform. 2016;11(8):10671073. PubMed ID: 26999381 doi:10.1123/ijspp.2016-0021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Highton J, Mullen T, Norris J, Oxendale C, Twist C. The unsuitability of energy expenditure derived from microtechnology for assessing internal load in collision-based activities. Int J Sports Physiol Perform. 2017;12(2):264267. PubMed ID: 27193085 doi:10.1123/ijspp.2016-0069

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    di Prampero PE, Fusi S, Sepulcri L, Morin J, Belli A, Antonutto G. Sprint running: a new energetic approach. J Exp Biol. 2005;208(14):28092816. doi:10.1242/jeb.01700

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Minetti AE, Moia C, Roi GS, Susta D, Ferretti G. Energy cost of walking and running at extreme uphill and downhill slopes. J Appl Physiol. 2002;93(3):10391046. PubMed ID: 12183501 doi:10.1152/japplphysiol.01177.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Minetti AE, Pavei G. Update and extension of the ‘equivalent slope’ of speed-changing level locomotion in humans: a computational model for shuttle running. J Exp Biol. 2018;221(15). doi:10.1242/jeb.182303

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gray AJ, Shorter K, Cummins C, Murphy A, Waldron M. Modelling movement energetics using global positioning system devices in contact team sports: limitations and solutions. Sports Med. 2018;48(6):13571368. PubMed ID: 29589291 doi:10.1007/s40279-018-0899-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Terziotti P, Sim M, Polglaze T. A comparison of displacement and energetic variables between three team sport GPS devices. Int J Perform Anal Sport. 2018;18(5):823834. doi:10.1080/24748668.2018.1525650

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Hoppe MW, Baumgart C, Polglaze T, Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE. 2018;13(2):0192708. PubMed ID: 29420620 doi:10.1371/journal.pone.0192708

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Osgnach C, di Prampero PE. Metabolic power in team sports—part 2: aerobic and anaerobic energy yields. Int J Sports Med. 2018;39(8):588595. PubMed ID: 29902809 doi:10.1055/a-0592-7219

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Abbott B, Bigland B, Ritchie J. The physiological cost of negative work. J Physiol. 1952;117(3):380390. doi:10.1113/jphysiol.1952.sp004755

  • 12.

    Polglaze T, Dawson B, Peeling P. Gold standard or fool’s gold? The efficacy of displacement variables as indicators of energy expenditure in team sports. Sports Med. 2016;46(5):657670. PubMed ID: 26643522 doi:10.1007/s40279-015-0449-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Varley MC, Aughey RJ. Acceleration profiles in elite Australian soccer. Int J Sports Med. 2013;34(1):3439. PubMed ID: 22895869

  • 14.

    Ingebrigtsen J, Dalen T, Hjelde GH, Drust B, Wisløff U. Acceleration and sprint profiles of a professional elite football team in match play. Eur J Sport Sci. 2015;15(2):101110. PubMed ID: 25005777 doi:10.1080/17461391.2014.933879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Akenhead R, Hayes PR, Thompson KG, French D. Diminutions of acceleration and deceleration output during professional football match play. J Sci Med Sport. 2013;16(6):556561. PubMed ID: 23333009 doi:10.1016/j.jsams.2012.12.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sonderegger K, Tschopp M, Taube W. The challenge of evaluating the intensity of short actions in soccer: a new methodological approach using percentage acceleration. PLoS ONE. 2016;11(11):e0166534. PubMed ID: 27846308 doi:10.1371/journal.pone.0166534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ryschon T, Fowler M, Wysong R, Anthony A-R, Balaban R. Efficiency of human skeletal muscle in vivo: comparison of isometric, concentric, and eccentric muscle action. J Appl Physiol. 1997;83(3):867874. PubMed ID: 9292475 doi:10.1152/jappl.1997.83.3.867

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bloomfield J, Polman R, O’Donoghue P. Physical demands of different positions in FA Premier League soccer. J Sports Sci Med. 2007;6(1):6370. PubMed ID: 24149226

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Buglione A, di Prampero PE. The energy cost of shuttle running. Eur J Appl Physiol. 2013;113(6):15351543. PubMed ID: 23299795 doi:10.1007/s00421-012-2580-9

  • 20.

    Sheppard J, Young W. Agility literature review: classifications, training and testing. J Sports Sci. 2006;24(9):919932. PubMed ID: 16882626 doi:10.1080/02640410500457109

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Zamparo P, Zadro I, Lazzer S, Beato M, Sepulcri L. Energetics of shuttle runs: the effects of distance and change of direction. Int J Sports Physiol Perform. 2014;9(6):10331039. PubMed ID: 24700201 doi:10.1123/ijspp.2013-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stevens T, de Ruiter CJ, van Maurik D, van Lierop C, Savelsbergh G, Beek PJ. Measured and estimated energy cost of constant and shuttle running in soccer players. Med Sci Sports Exerc. 2015;47(6):12191224. PubMed ID: 25211365 doi:10.1249/MSS.0000000000000515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Buchheit M, Manouvrier C, Cassirame J, Morin JB. Monitoring locomotor load in soccer: is metabolic power, powerful? Int J Sports Med. 2015;36(14):11491155. PubMed ID: 26393813 doi:10.1055/s-0035-1555927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Osgnach C, Paolini E, Roberti V, Vettor M, di Prampero PE. Metabolic power and oxygen consumption in team sports: a brief response to Buchheit et al. Int J Sports Med. 2016;37(1):7781. PubMed ID: 26742014 doi:10.1055/s-0035-1569321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    di Prampero PE, Osgnach C. Metabolic power in team sports—part 1: an update. Int J Sports Med. 2018;39(8):581587. PubMed ID: 29902808 doi:10.1055/a-0592-7660

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Coutts AJ, Quinn J, Hocking J, Castagna C, Rampinini E. Match running performance in elite Australian rules football. J Sci Med Sport. 2010;13(5):543548. PubMed ID: 19853508 doi:10.1016/j.jsams.2009.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Bradley PS, Noakes TD. Match running performance fluctuations in elite soccer: indicative of fatigue, pacing or situational influences? J Sports Sci. 2013;31(15):16271638. PubMed ID: 23808376 doi:10.1080/02640414.2013.796062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lythe J, Kilding A. The effect of substitution frequency on the physical and technical outputs of strikers during field hockey match play. Int J Perform Anal Sport. 2013;13(3):848859. doi:10.1080/24748668.2013.11868693

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Gaudino P, Iaia F, Alberti G, Strudwick A, Atkinson G, Gregson W. Monitoring training in elite soccer players: systematic bias between running speed and metabolic power data. Int J Sports Med. 2013;34(11):963968. PubMed ID: 23549691 doi:10.1055/s-0033-1337943

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Polglaze T, Dawson B, Buttfield A, Peeling P. Metabolic power and energy expenditure in an international men’s hockey tournament. J Sports Sci. 2018;36(2):140148. PubMed ID: 28282747 doi:10.1080/02640414.2017.1287933

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Polglaze T, Hogan C, Dawson B, et al. Classification of intensity in team sport activity. Med Sci Sports Exerc. 2018;50(7):14871494. PubMed ID: 29432324 doi:10.1249/MSS.0000000000001575

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Polglaze T, Dawson B, Buttfield A, Peeling P. Metabolic power: a sensitive tool to detect repeated high intensity efforts in team sport. Paper presented at: 22nd Annual Congress of the European College of Sport Science; July 5–8, 2017. Essen, Germany.

    • Search Google Scholar
    • Export Citation
  • 33.

    Hill-Haas SV, Dawson BT, Coutts AJ, Rowsell GJ. Physiological responses and time–motion characteristics of various small-sided soccer games in youth players. J Sports Sci. 2009;27(1):18. PubMed ID: 18989820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3532 946 89
Full Text Views 64 31 6
PDF Downloads 41 13 0