Determining the Relationship Between Internal Load Markers and Noncontact Injuries in Young Elite Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To examine the association and predictive ability of internal load markers with regard to noncontact injuries in young elite soccer players. Methods: Twenty-two soccer players (18.6 [0.6] y) who competed in the Spanish U19 League participated in the study. During a full season, noncontact injuries were recorded and, using session rating of perceived exertion, internal weekly load (sum of load of all training sessions and matches for each week) and acute:chronic workload ratio (typically, acute = current week and chronic = rolling 4-wk average) were calculated. A generalized estimating equation analysis was used to examine the association of weekly and acute:chronic load-ratio markers with a noncontact injury in the subsequent week. Load variables were also analyzed for predictive ability with receiver operating characteristic curve and area under the curve. Results: No association was found for weekly load (odds ratio = 1.00; 90% confidence interval, 0.99–1.00) and acute:chronic load ratio (odds ratio = 0.16; 90% confidence interval, 0.01–1.84) with respect to injury occurrence. In addition, the analyzed load markers showed poor ability to predict injury occurrence (area under the curve < .50). Conclusions: The results of this study suggest that internal load markers are not associated with noncontact injuries in young soccer players and present poor predictive capacity with regard to the latter.

Raya-González and Castillo are with the Faculty of Health Sciences, Universidad Isabel I, Burgos, Spain. Nakamura is with the College of Healthcare Sciences, James Cook University, Douglas, QLD, Australia, and the Dept of Medicine and Aging Sciences, “G. d’Annunzio” University of Chieti–Pescara, Pescara, Italy. Yanci is with Physical Education and Sport Dept, Faculty of Education and Sport, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain. Fanchini is with the Dept of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy, and US Sassuolo Football Club, Sassuolo, Italy.

Raya-González (rayagonzalezjavier@gmail.com) is corresponding author.
  • 1.

    Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):12261232. PubMed ID: 21335353 doi:10.1177/0363546510395879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Tourny C, Sangnier S, Cotte T, Langlois R, Coquart J. Epidemiologic study of young soccer player’s injuries in U12 to U20. J Sports Med Phys Fitness. 2014;54(4):526535. PubMed ID: 25034555

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ekstrand J. Keeping your top players on the pitch: the key to football medicine at a professional level. Br J Sports Med. 2013;47(12):723724. doi:10.1136/bjsports-2013-092771

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Lauersen JB, Bertelsen DM, Andersen LB. The effectiveness of exercise interventions to prevent sports injuries: a systematic review and meta-analysis of randomised controlled trials. Br J Sports Med. 2014;48(11):871877. PubMed ID: 24100287 doi:10.1136/bjsports-2013-092538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gabbett TJ, Whyte DG, Hartwig TB, Wescombe H, Naughton GA. The relationship between workloads, physical performance, injury and illness in adolescent male football players. Sports Med. 2014;44(7):9891003. doi:10.1007/s40279-014-0179-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br J Sports Med. 2016;50(5):273280. PubMed ID: 26758673 doi:10.1136/bjsports-2015-095788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Soligard T, Schwellnus M, Alonso JM, et al. How much is too much? (Part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br J Sports Med. 2016;50(17):10301041. PubMed ID: 27535989 doi:10.1136/bjsports-2016-096581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014;48(8):708712. doi:10.1136/bjsports-2013-092524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Malone S, Owen A, Newton M, Mendes B, Collins KD, Gabbett TJ. The acute:chonic workload ratio in relation to injury risk in professional soccer. J Sci Med Sport. 2017;20(6):561565. PubMed ID: 27856198 doi:10.1016/j.jsams.2016.10.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Piggott B, Newton MJ, McGuigan MR. The relationship between training load and incidence of injury and illness over a pre-season at an Australian Football League Club. J Aust Strength Cond. 2009;17:417.

    • Search Google Scholar
    • Export Citation
  • 11.

    Hulin BT, Gabbett TJ, Lawson DW, Caputi P, Sampson JA. The acute:chronic workload ratio predicts injury: high chronic workload may decrease injury risk in elite rugby league players. Br J Sports Med. 2016;50(4):231236. PubMed ID: 26511006 doi:10.1136/bjsports-2015-094817

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gabbett TJ. Influence of training and match intensity on injuries in rugby league. J Sports Sci. 2004;22(5):409417. PubMed ID: 15160594 doi:10.1080/02640410310001641638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Fanchini M, Rampinini E, Riggio M, Coutts AJ, Pecci C, McCall A. Despite association, the acute:chronic work load ratio does not predict non-contact injury in elite footballers. Sci Med Footb. 2018;2(2):108114. doi:10.1080/24733938.20181429014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    McCall A, Dupont G, Ekstrand J. Internal workload and non-contact injury: a one-season study of five teams from the UEFA Elite Club Injury Study. Br J Sports Med. 2018;52:15171522. doi:10.1136/bjsports-2017-098473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bowen L, Gross AS, Gimpel M, Li FX. Accumulated workloads and the acute:chronic workload ratio relate to injury risk in elite youth football players. Br J Sports Med. 2017;51(5):452459. PubMed ID: 27450360 doi:10.1136/bjsports-2015-095820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    McCall A, Dupont G, Ekstrand J. Injury prevention strategies, coach compliance and player adherence of 33 of the UEFA Elite Club Injury Study teams: a survey of teams’ head medical officers. Br J Sports Med. 2016;50(12):725730. PubMed ID: 26795611 doi:10.1136/bjsports-2015-095259

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Weiss KJ, Allen SV, McGuigan MR, Whatman CS. The relationship between training load and injury in men’s professional basketball. Int J Sports Physiol Perform. 2017;12(9):12381242. PubMed ID: 28253031 doi:10.1123/ijspp.2016-0726

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hägglund M, Waldén M, Bahr R, Ekstrand J. Methods for epidemiological study of injuries to professional football players: developing the UEFA model. Br J Sports Med. 2005;39(6):340346. doi:10.1136/bjsm.2005.018267

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Stares J, Dawson B, Peeling P, et al. Identifying high risk loading conditions for in-season injury in elite Australian football players. J Sci Med Sport. 2018;21(1):4651. PubMed ID: 28601588 doi:10.1016/j.jsams.2017.05.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Williamson DS, Bangdiwala SI, Marshall SW, Waller AE. Repeated measures analysis of binary outcomes: applications to injury research. Accid Anal Prev. 1996;28(5):571579. PubMed ID: 8899038 doi:10.1016/0001-4575(96)00023-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hopkins WG, Marshall SW, Quarrie KL, Hume PA. Risk factors and risk statistics for sports injuries. Clin J Sport Med. 2007;17(3):208210. PubMed ID: 17513914 doi:10.1097/JSM.0b013e3180592a68

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Crowcroft S, McCleave E, Slattery K, Coutts AJ. Assessing the measurement sensitivity and diagnostic characteristics of athlete-monitoring tools in national swimmers. Int J Sports Physiol Perform. 2017;12:S2-95S2-100. doi:10.1123/ijspp.2016-0406

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Menaspà P, Sassi A, Impellizzeri FM. Aerobic fitness variables do not predict the professional career of young cyclists. Med Sci Sports Exerc. 2010;42(4):805812. doi:10.1249/MSS.0b013e3181ba99bc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gabbett TJ, Jenkins DG. Relationship between training load and injury in professional rugby league players. J Sci Med Sport. 2011;14(3):204209. PubMed ID: 21256078 doi:10.1016/j.jsams.2010.12.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bahr R. Why screening tests to predict injury do not work—and probably never will…: a critical review. Br J Sports Med. 2016;50(13):776780. PubMed ID: 27095747 doi:10.1136/bjsports-2016-096256

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Bahr R, Holme I. Risk factors for sports injuries—a methodological approach. Br J Sports Med. 2003;37(5):384392. PubMed ID: 14514527 doi:10.1136/bjsm.37.5.384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hulin BT, Gabbett TJ. Indeed association does not equal prediction: the never-ending search for the perfect acute:chronic workload ratio. Br J Sports Med. 2019;53:144145. doi:10.1136/bjsports-2018-099448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Bittencourt NFN, Meeuwisse WH, Mendonça LD, Nettel-Aguirre A, Ocarino JM, Fonseca ST. Complex systems approach for sports injuries: moving from risk factor identification to injury pattern recognition—narrative review and new concept. Br J Sports Med. 2016;50(21):13091314. PubMed ID: 27445362 doi:10.1136/bjsports-2015-095850

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 296 295 27
Full Text Views 30 30 2
PDF Downloads 20 20 0