Caffeine and Sprint Cycling Performance: Effects of Torque Factor and Sprint Duration

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the influence of torque factor and sprint duration on the effects of caffeine on sprint cycling performance. Methods: Using a counterbalanced, randomized, double-blind, placebo-controlled design, 13 men completed 9 trials. In trial 1, participants completed a series of 6-s sprints at increasing torque factors to determine the torque factor, for each individual, that elicited the highest (Toptimal) peak power output (PPO). The remaining trials involved all combinations of torque factor (0.8 N·m−1·kg−1 vs Toptimal), sprint duration (10 s vs 30 s), and supplementation (caffeine [5 mg·kg−1] vs placebo). Results: There was a significant effect of torque factor on PPO, with higher values at Toptimal (mean difference 168 W; 95% likely range 142–195 W). There was also a significant effect of sprint duration on PPO, with higher values in 10-s sprints (mean difference 52 W; 95% likely range 18–86 W). However, there was no effect of supplementation on PPO (P = .056). Nevertheless, there was a significant torque factor × sprint duration × supplement interaction (P = .036), with post hoc tests revealing that caffeine produced a higher PPO (mean difference 76 W; 95% likely range 19–133 W) when the sprint duration was 10 s and the torque factor was Toptimal. Conclusion: The results of this study show that when torque factor and sprint duration are optimized, to allow participants to express their highest PPO, there is a clear effect of caffeine on sprinting performance.

Glaister, Towey, Jeffries, and McInnes are with the School of Sport, Health, and Applied Sciences, St Mary’s University, Twickenham, United Kingdom. Muniz-Pumares is with the School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom. Foley is with the Cardiff School of Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom.

Glaister (mark.glaister@stmarys.ac.uk) is corresponding author.
  • 1.

    Burke LM, Desbrow B, Spriet L. Caffeine for Sports Performance. Champaign, IL: Human Kinetics; 2013.

  • 2.

    Kalmar JM. The influence of caffeine on voluntary muscle activation. Med Sci Sports Exerc. 2005;37(12):2113–2119. PubMed ID: 16331138 doi:10.1249/01.mss.0000178219.18086.9e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Beck TW, Housh TJ, Schmidt RJ, et al. The acute effects of a caffeine-containing supplement on strength, muscular endurance, and anaerobic capabilities. J Strength Cond Res. 2006;20(3):506–510. PubMed ID: 16937961

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bell DG, Jacobs I, Elerington K. Effect of caffeine and ephedrine ingestion on anaerobic exercise performance. Med Sci Sports Exerc. 2001;33(8):1399–1403. PubMed ID: 11474345 doi:10.1097/00005768-200108000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Collomp K, Ahmaidi S, Audran M, Chanal JL, Prefaut C. Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate Test. Int J Sports Med. 1991;12(5):439–443. PubMed ID: 1752708 doi:10.1055/s-2007-1024710

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Greer F, Morales J, Coles M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl Physiol Nutr Metab. 2006;31(5):597–603. PubMed ID: 17111014 doi:10.1139/h06-030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hoffman JR, Kang J, Ratamess NA, Jennings PF, Mangine GT, Faigenbaum AD. Effect of nutritionally enriched coffee consumption on aerobic and anaerobic exercise performance. J Strength Cond Res. 2007;21(2):456–459. PubMed ID: 17530975

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lorino AJ, Lloyd LK, Crixell SH, Walker JL. The effects of caffeine on athletic agility. J Strength Cond Res. 2006;20(4):851–854. PubMed ID: 17194233

  • 9.

    Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab. 2008;18(4):412–429. PubMed ID: 18708685 doi:10.1123/ijsnem.18.4.412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Anselme F, Collomp K, Mercier B, Ahmaidi S, Prefaut C. Caffeine increases maximal anaerobic power and blood lactate concentration. Eur J Appl Physiol Occup Physiol. 1992;65(2):188–191. PubMed ID: 1396643 doi:10.1007/BF00705079

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Glaister M, Muniz-Pumares D, Patterson SD, Foley P, McInnes G. Caffeine supplementation and peak anaerobic power output. Eur J Sport Sci. 2015;15(5):400–406. PubMed ID: 25275888 doi:10.1080/17461391.2014.962619

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zajac A, Jarzabek R, Waskiewicz Z. The diagnostic value of the 10- and 30-second wingate test for competitive athletes. J Strength Cond Res. 1999;13(1):16–19. doi:10.1519/00124278-199902000-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Buśko K. Power output and mechanical efficiency of human muscle in maximal cycle ergometer efforts at different pedalling rates. Biol Sport. 2005;22(1):35–51.

    • Search Google Scholar
    • Export Citation
  • 14.

    Winter EM, Brown D, Roberts NKA, Brookes FBC, Swaine IL. Optimized and corrected peak power output during friction-braked cycle ergometry. J Sports Sci. 1996;14(6):513–521. PubMed ID: 8981290 doi:10.1080/02640419608727738

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Durnin JV, Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974;32(1):77–97. PubMed ID: 4843734 doi:10.1079/BJN19740060

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ozkaya OJ. Familiarization effects of an elliptical all-out test and the wingate test based on mechanical power indices. Sports Sci Med. 2013;12(3):521–525. PubMed ID: 24149160

    • Search Google Scholar
    • Export Citation
  • 17.

    Sawynok J, Yaksh TL. Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev. 1993;45(1):43–85. PubMed ID: 8475169

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bemben MG, Lamont HS. Creatine supplementation and exercise performance: recent findings. Sports Med. 2005;35(2):107–125. PubMed ID: 15707376 doi:10.2165/00007256-200535020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Carr AJ, Hopkins WG, Gore CJ. Effects of acute alkalosis and acidosis on performance: a meta-analysis. Sports Med. 2011;41(10):801–814. PubMed ID: 21923200 doi:10.2165/11591440-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. Biomed Res Int. 2013;2013:589361. PubMed ID: 24073413 doi:10.1155/2013/589361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Samozino P, Horvais N, Hintzy F. Why does power output decrease at high pedaling rates during sprint cycling? Med Sci Sports Exerc. 2007;39(4):680–687. PubMed ID: 17414806 doi:10.1249/MSS.0b013e3180315246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    van Soest AJ, Casius LJ. Which factors determine the optimal pedaling rate in sprint cycling? Med Sci Sports Exerc. 2000;32(11):1927–1934. PubMed ID: 11079524 doi:10.1097/00005768-200011000-00017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Dorel S, Hautier CA, Rambaud O, et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int J Sports Med. 2005;26(9):739–746. PubMed ID: 16237619 doi:10.1055/s-2004-830493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bolger R, Lyons M, Harrison AJ, Kenny IC. Sprinting performance and resistance-based training interventions: a systematic review. J Strength Cond Res. 2015;29(4):1146–1156. PubMed ID: 25268287 doi:10.1519/JSC.0000000000000720

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010;42(7):1375–1387. PubMed ID: 20019636 doi:10.1249/MSS.0b013e3181cabbd8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Raasch CC, Zajac FE, Ma B, Levine WS. Muscle coordination of maximum-speed pedaling. J Biomech. 1997;30(6):595–602. PubMed ID: 9165393 doi:10.1016/S0021-9290(96)00188-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Shield A, Zhou S. Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med. 2004;34(4):253–267. PubMed ID: 15049717 doi:10.2165/00007256-200434040-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 497 497 39
Full Text Views 34 34 2
PDF Downloads 20 20 0