Interunit Reliability and Effect of Data-Processing Methods of Global Positioning Systems

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To establish the interunit reliability of a range of global positioning system (GPS)-derived movement indicators, to determine the variation between manufacturers, and to investigate the difference between software-derived and raw data. Methods: A range of movement variables were obtained from 27 GPS units from 3 manufacturers (GPSports EVO, 10 Hz, n = 10; STATSports Apex, 10 Hz, n = 10; and Catapult S5, 10 Hz, n = 7) that measured the same team-sport simulation session while positioned on a sled. The interunit reliability was determined using the coefficient of variation (%) and 90% confidence limits, whereas between-manufacturers comparisons and comparisons of software versus raw processed data were established using standardized effect sizes and 90% confidence limits. Results: The interunit reliability for both software and raw processed data ranged from good to poor (coefficient of variation = 0.2%; ±1.5% to 78.2%; ±1.5%), with distance, speed, and maximal speed exhibiting the best reliability. There were substantial differences between manufacturers, particularly for threshold-based acceleration and deceleration variables (effect sizes; ±90% confidence limits: −2.0; ±0.1 to 1.9; ±0.1), and there were substantial differences between data-processing methods for a range of movement indicators. Conclusions: The interunit reliability of most movement indicators was deemed as good regardless of processing method, suggesting that practitioners can have confidence within systems. Standardized data-processing methods are recommended, due to the large differences between data outputs from various manufacturer-derived software.

Thornton is with La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia. Nelson, Delaney, and Serpiello are with the Inst for Health & Sport, Victoria University, Melbourne, VIC, Australia. Duthie is with the School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia.

Thornton (19088233@students.latrobe.edu.au) is corresponding author.
  • 1.

    Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43(10):1025–1042. PubMed ID: 23812857 doi:10.1007/s40279-013-0069-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170–178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Akenhead R, Harley J, Tweddle S. Examining the external training load of an English Premier League football team with special reference to acceleration. J Strength Cond Res. 2016;30(9):2424–2432. PubMed ID: 26817740 doi:10.1519/JSC.0000000000001343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Malone J, Lovell R, Varley M, Coutts A. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):218–226. PubMed ID: 27736244 doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Scott M, Scott T, Kelly V. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):1470–1490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Johnston R, Watsford M, Kelly S, Pine M, Spurrs R. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J Strength Cond Res. 2014;28(6):1649–1655. PubMed ID: 24276300 doi:10.1519/JSC.0000000000000323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Delaney J, Cummins C, Thornton H, Duthie G. Importance, reliability, and usefulness of acceleration measures in team sports. J Strength Cond Res. 2018;32(2):3485–3493. doi:10.1519/JSC.0000000000001849

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Varley M, Fairweather I, Aughey R. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sports Sci. 2012;30(2):121–127. PubMed ID: 22122431 doi:10.1080/02640414.2011.627941

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Delaney J, Duthie G, Thornton H, Scott T, Gay D, Dascombe B. Acceleration-based running intensities of professional rugby league match play. Int J Sports Physiol Perform. 2016;11(6):802–809. PubMed ID: 26693738 doi:10.1123/ijspp.2015-0424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thornton H, Duthie G, Pitchford N, Delaney J, Benton D, Dascombe B. Effects of a 2-week high-intensity training camp on sleep activity of professional rugby league athletes. Int J Sports Physiol Perform. 2017;12(7):928–933. PubMed ID: 27918662 doi:10.1123/ijspp.2016-0414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Duthie G, Thornton H, Delaney J, McMahon J, Benton D. Relationship between physical performance testing results and peak running intensity during professional rugby league match play [published online ahead of print October7, 2017]. J Strength Cond Res. doi:10.1519/JSC.0000000000002273

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kempton T, Sirotic A, Coutts A. Between match variation in professional rugby league competition. J Sci Med Sport. 2014;17(4):404–407. PubMed ID: 23777841 doi:10.1016/j.jsams.2013.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Delaney J, Thornton H, Pryor J, Stewart A, Dascombe B, Duthie G. Peak running intensity of international rugby: implications for training prescription. Int J Sports Physiol Perform. 2017;12(8):1039–1045. PubMed ID: 27967337 doi:10.1123/ijspp.2016-0469

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Delaney J, Thornton H, Burgess D, Dascombe B, Duthie G. Duration-specific running intensities of Australian football match-play. J Sci Med Sport. 2017;20(7):689–694. PubMed ID: 28131505 doi:10.1016/j.jsams.2016.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins W. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pyne D. Interpreting the results of fitness testing. Paper presented at: International Science and Football Symposium; 2003. Melbourne, Australia.

    • Export Citation
  • 17.

    Hopkins W. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:36–42.

  • 18.

    Duthie G, Pyne D, Hooper S. The reliability of video based time motion analysis. J Hum Mov Stud. 2003;44(3):259–271.

  • 19.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.

  • 20.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):3–13. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duthie GM, Pyne DB, Ross AA, Livingstone SG, Hooper SL. The reliability of ten-meter sprint time using different starting techniques. J Strength Cond Res. 2006;20(2):246–251. PubMed ID: 16686548 doi:10.1519/R-17084.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kempton T, Sirotic A, Rampinini E, Coutts A. Metabolic power demands of rugby league match play. Int J Sports Physiol Perform. 2015;10(1):23–28. PubMed ID: 24897755 doi:10.1123/ijspp.2013-0540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Akenhead R, French D, Thompson KG, Hayes PR. The acceleration dependent validity and reliability of 10 Hz GPS. J Sci Med Sport. 2014;17(5):562–566. PubMed ID: 24041579 doi:10.1016/j.jsams.2013.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Manouvrier C, Cassirame J, Morin JB. Monitoring locomotor load in soccer: is metabolic power, powerful? Int J Sports Med. 2015;36(14):1149–1155. PubMed ID: 26393813 doi:10.1055/s-0035-1555927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hoppe M, Baumgart C, Polglaze T, Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE. 2018;13(2):e0192708. PubMed ID: 29420620 doi:10.1371/journal.pone.0192708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 179 178 31
Full Text Views 25 25 16
PDF Downloads 8 8 4