Interunit Reliability and Effect of Data-Processing Methods of Global Positioning Systems

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Heidi R. Thornton
Search for other papers by Heidi R. Thornton in
Current site
Google Scholar
PubMed
Close
,
André R. Nelson
Search for other papers by André R. Nelson in
Current site
Google Scholar
PubMed
Close
,
Jace A. Delaney
Search for other papers by Jace A. Delaney in
Current site
Google Scholar
PubMed
Close
,
Fabio R. Serpiello
Search for other papers by Fabio R. Serpiello in
Current site
Google Scholar
PubMed
Close
, and
Grant M. Duthie
Search for other papers by Grant M. Duthie in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To establish the interunit reliability of a range of global positioning system (GPS)-derived movement indicators, to determine the variation between manufacturers, and to investigate the difference between software-derived and raw data. Methods: A range of movement variables were obtained from 27 GPS units from 3 manufacturers (GPSports EVO, 10 Hz, n = 10; STATSports Apex, 10 Hz, n = 10; and Catapult S5, 10 Hz, n = 7) that measured the same team-sport simulation session while positioned on a sled. The interunit reliability was determined using the coefficient of variation (%) and 90% confidence limits, whereas between-manufacturers comparisons and comparisons of software versus raw processed data were established using standardized effect sizes and 90% confidence limits. Results: The interunit reliability for both software and raw processed data ranged from good to poor (coefficient of variation = 0.2%; ±1.5% to 78.2%; ±1.5%), with distance, speed, and maximal speed exhibiting the best reliability. There were substantial differences between manufacturers, particularly for threshold-based acceleration and deceleration variables (effect sizes; ±90% confidence limits: −2.0; ±0.1 to 1.9; ±0.1), and there were substantial differences between data-processing methods for a range of movement indicators. Conclusions: The interunit reliability of most movement indicators was deemed as good regardless of processing method, suggesting that practitioners can have confidence within systems. Standardized data-processing methods are recommended, due to the large differences between data outputs from various manufacturer-derived software.

Thornton is with La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, VIC, Australia. Nelson, Delaney, and Serpiello are with the Inst for Health & Sport, Victoria University, Melbourne, VIC, Australia. Duthie is with the School of Exercise Science, Australian Catholic University, Strathfield, NSW, Australia.

Thornton (19088233@students.latrobe.edu.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Cummins C, Orr R, O’Connor H, West C. Global positioning systems (GPS) and microtechnology sensors in team sports: a systematic review. Sports Med. 2013;43(10):10251042. PubMed ID: 23812857 doi:10.1007/s40279-013-0069-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Osgnach C, Poser S, Bernardini R, Rinaldo R, di Prampero PE. Energy cost and metabolic power in elite soccer: a new match analysis approach. Med Sci Sports Exerc. 2010;42(1):170178. PubMed ID: 20010116 doi:10.1249/MSS.0b013e3181ae5cfd.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Akenhead R, Harley J, Tweddle S. Examining the external training load of an English Premier League football team with special reference to acceleration. J Strength Cond Res. 2016;30(9):24242432. PubMed ID: 26817740 doi:10.1519/JSC.0000000000001343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Malone J, Lovell R, Varley M, Coutts A. Unpacking the black box: applications and considerations for using GPS devices in sport. Int J Sports Physiol Perform. 2017;12(suppl 2):218226. PubMed ID: 27736244 doi:10.1123/ijspp.2016-0236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Scott M, Scott T, Kelly V. The validity and reliability of global positioning systems in team sport: a brief review. J Strength Cond Res. 2016;30(5):14701490. PubMed ID: 26439776 doi:10.1519/JSC.0000000000001221

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Johnston R, Watsford M, Kelly S, Pine M, Spurrs R. Validity and interunit reliability of 10 Hz and 15 Hz GPS units for assessing athlete movement demands. J Strength Cond Res. 2014;28(6):16491655. PubMed ID: 24276300 doi:10.1519/JSC.0000000000000323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Delaney J, Cummins C, Thornton H, Duthie G. Importance, reliability, and usefulness of acceleration measures in team sports. J Strength Cond Res. 2018;32(2):34853493. doi:10.1519/JSC.0000000000001849

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Varley M, Fairweather I, Aughey R. Validity and reliability of GPS for measuring instantaneous velocity during acceleration, deceleration, and constant motion. J Sports Sci. 2012;30(2):121127. PubMed ID: 22122431 doi:10.1080/02640414.2011.627941

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Delaney J, Duthie G, Thornton H, Scott T, Gay D, Dascombe B. Acceleration-based running intensities of professional rugby league match play. Int J Sports Physiol Perform. 2016;11(6):802809. PubMed ID: 26693738 doi:10.1123/ijspp.2015-0424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Thornton H, Duthie G, Pitchford N, Delaney J, Benton D, Dascombe B. Effects of a 2-week high-intensity training camp on sleep activity of professional rugby league athletes. Int J Sports Physiol Perform. 2017;12(7):928933. PubMed ID: 27918662 doi:10.1123/ijspp.2016-0414

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Duthie G, Thornton H, Delaney J, McMahon J, Benton D. Relationship between physical performance testing results and peak running intensity during professional rugby league match play [published online ahead of print October7, 2017]. J Strength Cond Res. doi:10.1519/JSC.0000000000002273

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kempton T, Sirotic A, Coutts A. Between match variation in professional rugby league competition. J Sci Med Sport. 2014;17(4):404407. PubMed ID: 23777841 doi:10.1016/j.jsams.2013.05.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Delaney J, Thornton H, Pryor J, Stewart A, Dascombe B, Duthie G. Peak running intensity of international rugby: implications for training prescription. Int J Sports Physiol Perform. 2017;12(8):10391045. PubMed ID: 27967337 doi:10.1123/ijspp.2016-0469

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Delaney J, Thornton H, Burgess D, Dascombe B, Duthie G. Duration-specific running intensities of Australian football match-play. J Sci Med Sport. 2017;20(7):689694. PubMed ID: 28131505 doi:10.1016/j.jsams.2016.11.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins W. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Pyne D. Interpreting the results of fitness testing. Paper presented at: International Science and Football Symposium; 2003. Melbourne, Australia.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins W. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642.

  • 18.

    Duthie G, Pyne D, Hooper S. The reliability of video based time motion analysis. J Hum Mov Stud. 2003;44(3):259271.

  • 19.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Erlbaum; 1988.

  • 20.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Duthie GM, Pyne DB, Ross AA, Livingstone SG, Hooper SL. The reliability of ten-meter sprint time using different starting techniques. J Strength Cond Res. 2006;20(2):246251. PubMed ID: 16686548 doi:10.1519/R-17084.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kempton T, Sirotic A, Rampinini E, Coutts A. Metabolic power demands of rugby league match play. Int J Sports Physiol Perform. 2015;10(1):2328. PubMed ID: 24897755 doi:10.1123/ijspp.2013-0540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Akenhead R, French D, Thompson KG, Hayes PR. The acceleration dependent validity and reliability of 10 Hz GPS. J Sci Med Sport. 2014;17(5):562566. PubMed ID: 24041579 doi:10.1016/j.jsams.2013.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Buchheit M, Manouvrier C, Cassirame J, Morin JB. Monitoring locomotor load in soccer: is metabolic power, powerful? Int J Sports Med. 2015;36(14):11491155. PubMed ID: 26393813 doi:10.1055/s-0035-1555927

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Hoppe M, Baumgart C, Polglaze T, Freiwald J. Validity and reliability of GPS and LPS for measuring distances covered and sprint mechanical properties in team sports. PLoS ONE. 2018;13(2):e0192708. PubMed ID: 29420620 doi:10.1371/journal.pone.0192708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3422 1281 244
Full Text Views 131 21 2
PDF Downloads 148 42 7