Higher- Versus Lower-Intensity Strength-Training Taper: Effects on Neuromuscular Performance

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the effects of strength-training tapers of different intensities but equal volume reductions on neuromuscular performance. Methods: Eleven strength-trained men (21.3 [3.3] y, 92.3 [17.6] kg, relative 1-repetition-maximum deadlift 1.9 [0.2] times bodyweight) completed a crossover study. Specifically, two 4-wk strength-training blocks were followed by a taper week with reduced volume (∼70%) involving either increased (5.9%) or decreased (−8.5%) intensity. Testing occurred pretraining (T1), posttraining (T2), and posttaper (T3). Salivary testosterone and cortisol, plasma creatine kinase, a Daily Analysis of Life Demands in Athletes questionnaire, countermovement jump (CMJ), isometric midthigh pull, and isometric bench press were measured. Results: CMJ height improved significantly over time (P < .001), with significant increases from T1 (38.0 [5.5] cm) to both T2 (39.3 [5.3] cm; P = .010) and T3 (40.0 [5.3] cm; P = .001) and from T2 to T3 (P = .002). CMJ flight time:contraction time increased significantly over time (P = .004), with significant increases from T1 (0.747 [0.162]) to T2 (0.791 [0.163]; P = .012). Isometric midthigh-pull relative peak force improved significantly over time (P = .033), with significant increases from T1 (34.7 [5.0] N/kg) to T2 (35.9 [4.8] N/kg; P = .013). No significant changes were found between tapers. However, the higher-intensity taper produced small effect-size increases at T3 vs T1 for isometric midthigh-pull relative peak force, CMJ height, and flight time:contraction time, while the lower-intensity taper only produced small effect-size improvements at T3 vs T1 for CMJ height. Conclusions: A strength-training taper with volume reductions had a positive effect on power, with a tendency for the higher-intensity taper to produce more favorable changes in strength and power.

Pritchard and Stewart are with the Faculty of Health Sciences, and Pritchard also with Exercise and Wellness, Universal College of Learning, Palmerston North, New Zealand. Pritchard, Keogh, and McGuigan are with Sports Performance Research Inst New Zealand, Auckland University of Technology, Auckland, New Zealand. Barnes is with the School of Sport and Exercise, Massey University, Palmerston North, New Zealand. Keogh is also with the Faculty of Health Sciences & Medicine, Bond University, Robina, QLD, Australia, and the Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia. McGuigan is also with the School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.

Pritchard (h.pritchard@ucol.ac.nz) is corresponding author.
  • 1.

    Pritchard H, Keogh J, Barnes M, McGuigan M. Effects and mechanisms of tapering in maximizing muscular strength. Strength Cond J. 2015;37(2):72–83. doi:10.1519/SSC.0000000000000125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Le Meur Y, Hausswirth C, Mujika I. Tapering for competition: a review. Sci Sports. 2012;27(2):77–87. doi:10.1016/j.scispo.2011.06.013

  • 3.

    Mujika I, Padilla S. Scientific bases for precompetition tapering strategies. Med Sci Sports Exerc. 2003;35(7):1182–1187. PubMed ID: 12840640 doi:10.1249/01.MSS.0000074448.73931.11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hooper SL, Mackinnon LT, Ginn EM. Effects of three tapering techniques on the performance, forces and psychometric measures of competitive swimmers. Eur J Appl Physiol Occup Physiol. 1998;78(3):258–263. PubMed ID: 9721006 doi:10.1007/s004210050417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    de Lacey J, Brughelli M, McGuigan M, Hansen K, Samozino P, Morin JB. The effects of tapering on power–force–velocity profiling and jump performance in professional rugby league players. J Strength Cond Res. 2014;28(12):3567–3570. PubMed ID: 24936904 doi:10.1519/JSC.0000000000000572

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Coutts A, Reaburn P, Piva TJ, Murphy A. Changes in selected biochemical, muscular strength, power, and endurance measures during deliberate overreaching and tapering in rugby league players. Int J Sports Med. 2007;28(2):116–124. PubMed ID: 16835824 doi:10.1055/s-2006-924145

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Häkkinen K, Kallinen M, Komi PV, Kauhanen H. Neuromuscular adaptations during short-term “normal” and reduced training periods in strength athletes. Electromyogr Clin Neurophysiol. 1991;31(1):35–42.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Zaras N, Stasinaki A, Krase A, et al. Effects of tapering with light vs. heavy loads on track and field throwing performance. J Strength Cond Res. 2014;28(12):3484–3495. PubMed ID: 24910954 doi:10.1519/JSC.0000000000000566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mujika I. Intense training: the key to optimal performance before and during the taper. Scand J Med Sci Sports. 2010;20(suppl 2):24–31. doi:10.1111/j.1600-0838.2010.01189.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Pritchard HJ, Tod DA, Barnes MJ, Keogh JW, McGuigan MR. Tapering practices of New Zealand’s elite raw powerlifters. J Strength Cond Res. 2016;30(7):1796–1804. PubMed ID: 26670988 doi:10.1519/JSC.0000000000001292

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gibala MJ, MacDougall JD, Sale DG. The effects of tapering on strength performance in trained athletes. Int J Sports Med. 1994;15(8):492–497. PubMed ID: 7890463 doi:10.1055/s-2007-1021093

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Marrier B, Robineau J, Piscione J, et al. Supercompensation kinetics of physical qualities during a taper in team-sport athletes. Int J Sports Physiol Perform. 2017;12(9):1163–1169. PubMed ID: 28121198 doi:10.1123/ijspp.2016-0607

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Izquierdo M, Ibanez J, Gonzalez-Badillo JJ, et al. Detraining and tapering effects on hormonal responses and strength performance. J Strength Cond Res. 2007;21(3):768–775. PubMed ID: 17685721

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Grgic J, Mikulic P. Tapering practices of Croatian open-class powerlifting champions. J Strength Cond Res. 2017;31(9):2371–2378. doi:10.1519/JSC.0000000000001699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Haff GG, Triplett NT. Essentials of Strength Training and Conditioning. 4th ed. Champaign, IL: Human Kinetics; 2015.

  • 16.

    Brzycki M. Strength testing—predicting a one-rep max from reps-to-fatigue. J Phys Educ Recreat Dance. 1993;64(1):88–90. doi:10.1080/07303084.1993.10606684

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Pritchard HJ, Barnes MJ, Stewart RJC, Keogh JWL, McGuigan MR. Short-term training cessation as a method of tapering to improve maximal strength. J Strength Cond Res. 2018;32(2):458–465. PubMed ID: 29369954 doi:10.1519/JSC.0000000000001803

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Rushall BS. A tool for measuring stress tolerance in elite athletes. J Appl Sport Psychol. 1990;2(1):51–66. doi:10.1080/10413209008406420

  • 19.

    Storey AG, Birch NP, Fan V, Smith HK. Stress responses to short-term intensified and reduced training in competitive weightlifters. Scand J Med Sci Sports. 2015;26(1):29–40. PubMed ID: 25640639 doi:10.1111/sms.12400

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Pritchard HJ, Barnes MJ, Keogh JW, McGuigan MR. The effectiveness of Prilepins chart for strength improvements in recreationally strength trained males. J Strength Cond Res. 2016;30(suppl 2):101.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. A scale of magnitudes for effect statistics: a new view of statistics. 2002. http://www.sportsci.org/resource/stats/effectmag.html. Accessed October 2014.

    • Export Citation
  • 22.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power. Sports Med. 2011;41(1):17–38. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Twist C, Highton J. Monitoring fatigue and recovery in rugby league players. Int J Sports Physiol Perform. 2013;8:467–474. PubMed ID: 23319463 doi:10.1123/ijspp.8.5.467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Argus CK, Gill N, Keogh J, Hopkins WG, Beaven CM. Effects of a short-term pre-season training programme on the body composition and anaerobic performance of professional rugby union players. J Sports Sci. 2010;28(6):679–686. PubMed ID: 20397095 doi:10.1080/02640411003645695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McGuigan MR, Kane MK. Reliability of performance of elite Olympic weightlifters. J Strength Cond Res. 2004;18(3):650–653. PubMed ID: 15320651

  • 26.

    Weiss LW, Coney HD, Clark FC. Optimal post-training abstinence for maximal strength expression. Res Sports Med. 2003;11(3):145–155. doi:10.1080/15438620390331139

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Weiss LW, Wood LE, Fry AC, et al. Strength/power augmentation subsequent to short-term training abstinence. J Strength Cond Res. 2004;18(4):765–770. PubMed ID: 15574080

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Kraemer WJ, Ratamess NA. Hormonal responses and adaptations to resistance exercise and training. Sports Med. 2005;35(4):339–361. PubMed ID: 15831061 doi:10.2165/00007256-200535040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Fry AC, Kraemer WJ. Resistance exercise overtraining and overreaching: neuroendocrine responses. Sports Med. 1997;23(2):106–129. PubMed ID: 9068095 doi:10.2165/00007256-199723020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 441 441 80
Full Text Views 25 25 5
PDF Downloads 14 14 3