Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To determine whether heart-rate variability (HRV) was correlated with other training-load and training-tolerance markers for monitoring the effect of a training session on elite synchronized swimmers. Methods: The authors recorded the resting HRV of 12 elite swimmers (mean age = 21.5 [3.5] y) 3 times over 1 wk with a cadence of 48 h prior to the 2015 World Swimming Championships. They continuously monitored heart rate and obtained salivary cortisol (SC) samples before and after the last training session of the week. The authors measured capillary blood lactate (La) 2, 4, and 8 min after the last training session and monitored recovery HRV. They assessed rating of perceived exertion (RPE) over the entire session and tested the association between the highest La concentration (Lapeak), SC, and RPE and relative changes (Δ%) in the natural logarithm of the root-mean-square successive difference of intervals (LnRMSSD). The authors also calculated the smallest worthwhile change of the averaged pre and post LnRMSSD measurements. Results: There were periods of pronounced bradycardia (60.5 [16.7] beats/min) during training exercises corresponding to apneic exercise. The magnitude-based inferences showed nonclinically meaningful changes of LnRMSSD. Lapeak (6.8 [2.7] mmol/L) correlated positively with Δ%LnRMSSD and Δ%SC (r = .89, P = .001 and r = .61, P = .04, respectively). Conclusions: There was no change in LnRMSSD and Lapeak, Δ%SC, and RPE indicated reduced sympathetic activation and positive adaptation to the stress imposed by the session. Isolated HRV assessment may reveal a controversial interpretation of autonomic nervous system status or the training tolerance in elite synchronized swimming athletes due to the influence of the diving response.

Solana-Tramunt, Morales, and Buscà are with the Dept of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, Barcelona, Spain. Carbonell is with the Clinical Biochemistry Dept, Germans Trias i Pujol Hospital, Autonomous University of Barcelona, Badalona, Spain. Rodríguez-Zamora is with the Environmental Physiology Group, Dept of Health Sciences, Mid Sweden University, Östersund, Sweden.

Solana-Tramunt (monicast2@blanquerna.url.edu) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Rodríguez-Zamora LIglesias XBarrero Aet al. Perceived exertion, time of immersion and physiological correlates in synchronized swimming. Int J Sports Med. 2014;35(5):403411. PubMed ID: 24081620 doi:10.1055/s-0033-1353177

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rodríguez-Zamora LIglesias XBarrero AChaverri DErola PRodríguez FA. Physiological responses in relation to performance during competition in elite synchronized swimmers. PLoS ONE. 2012;7(11):49098. doi:10.1371/journal.pone.0049098

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Rodriguez-Zamora LEngan HLodin-Sundström AIglesias XRodriguez FASchagatay E. Blood lactate accumulation after competitive free diving and synchronized swimming. Undersea Hyperb Med. 2018;45(1):5563. PubMed ID: 29571233 doi:10.22462/01.02.2018.8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schaal KLe Meur YBieuzen Fet al. Effect of recovery mode on postexercise vagal reactivation in elite synchronized swimmers. Appl Physiol Nutr Metab. 2013;38(2):126133. PubMed ID: 23438222 doi:10.1139/apnm-2012-0155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chatard JCMujika IChantegraille MCKostucha J. Performance and physiological responses to a 5-week synchronized swimming technical training programme in humans. Eur J Appl Physiol Occup Physiol. 1999;79(6):479483. PubMed ID: 10344455 doi:10.1007/s004210050540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bante SBogdanis GCChairopoulou CMaridaki M. Cardiorespiratory and metabolic responses to a simulated synchronized swimming routine in senior (>18 yrs) and comen (13–15 yrs) national level athletes. J Sports Med Phys Fitness. 2007;47(3):291299. PubMed ID: 17641595

    • Search Google Scholar
    • Export Citation
  • 7.

    Rodríguez-Zamora LIglesias XBarrero ATorres LChaverri DRodriguez FA. Monitoring internal load parameters during competitive synchronized swimming duet routines in elite athletes. J Strength Cond Res. 2014;28(3):742751. doi:10.1519/JSC.0b013e3182a20ee7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Schaal KTiollier ELe Meur YCasazza GHausswirth C. Elite synchronized swimmers display decreased energy availability during intensified training. Scand J Med Sci Sport. 2017;27(9):925934. doi:10.1111/sms.12716

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354381. doi:10.1093/oxfordjournals.eurheartj.a014868

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bellenger CRFuller JTThomson RLDavison KRobertson EYBuckley JD. Monitoring athletic training status through autonomic heart rate regulation: a systematic review and meta-analysis. Sport Med. 2016;46(10):14611486. doi:10.1007/s40279-016-0484-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Plews DJLaursen PBStanley JKilding AEBuchheit M. Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring. Sport Med. 2013;43(9):773781. doi:10.1007/s40279-013-0071-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Plews DJLaursen PBKilding AEBuchheit M. Evaluating training adaptation with heart-rate measures: a methodological comparison. Int J Sports Physiol Perform. 2013;8:688691. PubMed ID: 23479420 doi:10.1123/ijspp.8.6.688

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bellenger CRThomson RLRobertson EYet al. The effect of functional overreaching on parameters of autonomic heart rate regulation. Eur J Appl Physiol. 2017;117(3):541550. PubMed ID: 28188371 doi:10.1007/s00421-017-3549-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Elstad MNådland IHToska KWalløe L. Stroke volume decreases during mild dynamic and static exercise in supine humans. Acta Physiol. 2009;195(2):289300. doi:10.1111/j.1748-1716.2008.01887.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Mateo MBlasco-Lafarga CMartínez-Navarro IGuzmán JFZabala M. Heart rate variability and pre-competitive anxiety in BMX discipline. Eur J Appl Physiol. 2012;112(1):113123. PubMed ID: 21503698 doi:10.1007/s00421-011-1962-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schagatay Evan Kampen MEmanuelsson SHolm B. Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol. 2000;82(3):161169. PubMed ID: 10929209 doi:10.1007/s004210050668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gooden BA. The diving response in clinical medicine. Aviat Space Environ Med. 1982;53(3):273276. PubMed ID: 6764871

  • 19.

    Fagius JSundloft G. The diving response in man: effects on sympathetic activity in muscle and skin nerve fascicles. J Physiol. 1986;377:429443. PubMed ID: 3795097 doi:10.1113/jphysiol.1986.sp016196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Sakamoto JTLiu NKoh ZXet al. Heart rate variability analysis in patients who have bradycardia presenting to the emergency department with chest pain. J Emerg Med. 2018;54(3):273280. doi:10.1016/j.jemermed.2017.10020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Barbosa EGarcia-Manso JMMartin-Gonzalez JMSarmiento SCalderon FJDa Silva-Grigoletto ME. Effect of hyperbaric pressure during scuba diving on autonomic modulation of the cardiac response: application of the continuous wavelet transform to the analysis of heart rate variability. Mil Med. 2010;175(1):6164. PubMed ID: 20108844 doi:10.7205/MILMED-D-02-0808

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kaikkonen PHynynen EMann TRusko HNummela ALinnarsson D. Heart rate variability is related to training load variables in interval running exercises. Eur J Appl Physiol. 2012;112(3):829838. PubMed ID: 21678140 doi:10.1007/s00421-011-2031-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Alentejano TCMarshall DBell GJ. Breath holding with water immersion in synchronized swimmers and untrained women. Res Sports Med. 2010;18(2):97114. PubMed ID: 20397113 doi:10.1080/15438620903323678

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hedman AEHartikainen JETahvanainen KUHakumäki MO. The high frequency component of heart rate variability reflects cardiac parasympathetic modulation rather than parasympathetic ‘tone’. Acta Physiol Scand. 1995;155(3):267273. PubMed ID: 8619324 doi:10.1111/j.1748-1716.1995.tb09973.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Sartor FVailati EValsecchi VVailati F. Heart rate variability reflects training load and psychophysiological status in young elite gymnasts. J Strength Cond Res. 2013;27(10):27822790. doi:10.1519/JSC.0b013e31828783cc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Buchheit MRacinais SBilsborough JCet al. Monitoring fitness, fatigue and running performance during a pre-season training camp in elite football players. J Sci Med Sport. 2013;16(6):550555. PubMed ID: 23332540 doi:10.1016/j.jsams.2012.12.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mujika IChatard JCGeyssant A. Effects of training and taper on blood leucocyte populations in competitive swimmers: relationships with cortisol and performance. Int J Sports Med. 1996;17(3):213217. PubMed ID: 8739576 doi:10.1055/s-2007-972834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Bonifazi MSardella FLupo C. Preparatory versus main competitions: differences in performances, lactate responses and pre-competition plasma cortisol concentrations in elite male swimmers. Eur J Appl Physiol. 2000;82(5–6):368373. PubMed ID: 10985589 doi:10.1007/s004210000230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Perna FMMcDowell SL. Role of psychological stress in cortisol recovery from exhaustive exercise among elite athletes. Int J Behav Med. 1995;2(1):1326. PubMed ID: 16250786 doi:10.1207/s15327558ijbm0201_2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 122 122 51
Full Text Views 10 10 6
PDF Downloads 40 40 36
Altmetric Badge
PubMed
Google Scholar