Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To compare the sprint mechanical force–velocity (F–V) profile between soccer and futsal players. A secondary aim was, within each sport, to study the differences in sprint mechanical F–V profile between sexes and players of different levels. Methods: A total of 102 soccer players (63 men) and 77 futsal players (49 men) who were competing from the elite to amateur levels in the Spanish league participated in this investigation. The testing procedure consisted of 3 unloaded maximal 40-m sprints. The velocity–time data recorded by a radar device were used to calculate the variables of the sprint acceleration F–V profile (maximal theoretical force [F0], maximal theoretical velocity [V0], maximal power [Pmax], decrease in the ratio of horizontal to resultant force [DRF], and maximal ratio of horizontal to resultant force [RFpeak]). Results: Futsal players showed a higher F0 than soccer players (effect size [ES] range: 0.11–0.74), while V0 (ES range: −0.48 to −1.15) and DRF (ES range: −0.75 to −1.45) was higher for soccer players. No significant differences were observed between soccer and futsal players for Pmax (ES range: −0.43 to 0.19) and RFpeak (ES range: −0.49 to 0.30). Men and high-level players presented an overall enhanced F–V profile compared with women and their lower-level counterparts, respectively. Conclusions: The higher F0 and lower V0 of futsal players could be caused by the game’s specific demands (larger number of accelerations but over shorter distances than in soccer). These results show that the sprint mechanical F–V profile is able to distinguish between soccer and futsal players.

Jiménez-Reyes is with the Center for Sport Studies, King Juan Carlos University, Madrid, Spain, and the Faculty of Sport, Catholic University of San Antonio, Murcia, Spain. García-Ramos is with the Dept of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain, and the Dept of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of the Most Holy Conception, Concepción, Chile. Cuadrado-Peñafiel is with the Faculty of Physical Activity and Sport Sciences, Technical University of Madrid, Madrid, Spain. Párraga-Montilla and Morcillo-Losa are with the Dept of Corporal Expression, University of Jaen, Jaén, Spain. Samozino is with the Interuniversity Laboratory of Biology and Motricity (EA7424), University of Savoie Mont Blanc, Chambéry, France. Morin is with the Laboratory of Human Motricity, Education, Sport, Health (LAMHESS), Côte d’Azur University, Nice, France, and the Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand.

Jiménez-Reyes (peterjr49@hotmail.com) is corresponding author.
  • 1.

    Kunz M. Big count: 265 million playing football. FIFA Magazine, July 10–15, 2007. http://www.fifa.com/mm/document/fifafacts/bcoffsurv/emaga_9384_10704.pdf.

    • Search Google Scholar
    • Export Citation
  • 2.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–631. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Mohammed A, Shafizadeh M, Platt GK. Effects of the level of expertise on the physical and technical demands in futsal. Int J Perform Anal Sport. 2014;14(2):473–481. doi:10.1080/24748668.2014.11868736

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Taylor JB, Wright AA, Dischiavi SL, Townsend MA, Marmon AR. Activity demands during multi-directional team sports: a systematic review. Sports Med. 2017;47(12):2533–2551. PubMed ID: 28801751 doi:10.1007/s40279-017-0772-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Haugen T, Tonnessen E, Hisdal J, Seiler S. The role and development of sprinting speed in soccer. Int J Sports Physiol Perform. 2014;9(3):432–441. PubMed ID: 23982902 doi:10.1123/ijspp.2013-0121

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ramirez-Campillo R, Gallardo F, Henriquez-Olguin C, et al. Effect of vertical, horizontal, and combined plyometric training on explosive, balance, and endurance performance of young soccer players. J Strength Cond Res. 2015;29(7):1784–1795. PubMed ID: 25559903 doi:10.1519/JSC.0000000000000827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Yanci J, Castillo D, Iturricastillo A, Ayarra R, Nakamura FY. Effects of two different volume-equated weekly distributed short-term plyometric training programs on futsal players’ physical performance. J Strength Cond Res. 2017;31(7):1787–1794. PubMed ID: 27662489 doi:10.1519/JSC.0000000000001644

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rumpf MC, Lockie RG, Cronin JB, Jalilvand F. Effect of different sprint training methods on sprint performance over various distances: a brief review. J Strength Cond Res. 2016;30(6):1767–1785. PubMed ID: 26492101 doi:10.1519/JSC.0000000000001245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381–400. PubMed ID: 26553497 doi:10.1007/s40279-015-0422-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–658. doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Romero-Franco N, Jiménez-Reyes P, Castaño-Zambudio A, et al. Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci. 2017;17(4):386–392. PubMed ID: 27806673 doi:10.1080/17461391.2016.1249031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):1680–1688. PubMed ID: 21364480 doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bradley PS, Carling C, Gomez Diaz A, et al. Match performance and physical capacity of players in the top three competitive standards of English professional soccer. Hum Mov Sci. 2013;32(4):808–821. PubMed ID: 23978417 doi:10.1016/j.humov.2013.06.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rampinini E, Impellizzeri FM, Castagna C, Coutts AJ, Wisloff U. Technical performance during soccer matches of the Italian Serie A league: effect of fatigue and competitive level. J Sci Med Sport. 2009;12(1):227–233. PubMed ID: 18083631 doi:10.1016/j.jsams.2007.10.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Castellano J, Alvarez-Pastor D, Bradley PS. Evaluation of research using computerised tracking systems (Amisco and Prozone) to analyse physical performance in elite soccer: a systematic review. Sports Med. 2014;44(5):701–712. PubMed ID: 24510701 doi:10.1007/s40279-014-0144-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Naser N, Ali A, Macadam P. Physical and physiological demands of futsal. J Exerc Sci Fit. 2017;15(2):76–80. PubMed ID: 29541136 doi:10.1016/j.jesf.2017.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Barbero-Alvarez JC, Soto VM, Barbero-Alvarez V, Granda-Vera J. Match analysis and heart rate of futsal players during competition. J Sports Sci. 2008;26(1):63–73. PubMed ID: 17899472 doi:10.1080/02640410701287289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–688. PubMed ID: 15064596 doi:10.1249/01.MSS.0000121945.36635.61

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Marcote-Pequeño R, García-Ramos A, Cuadrado-Peñafiel V, González-Hernández JM, Gómez MA, Jiménez-Reyes P. Association between the force–velocity profile and performance variables obtained in jumping and sprinting in elite female soccer players. Int J Sports Physiol Perform. 2019;14(2):209–215. doi:10.1123/ijspp.2018-0233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.

  • 23.

    Ünveren A. Investigating women futsal and soccer players’ acceleration, speed and agility features. Anthropologist. 2015;21(1–2):361–365. doi:10.1080/09720073.2015.11891825

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Benvenuti C, Minganti C, Condello G, Capranica L, Tessitore A. Agility assessment in female futsal and soccer players. Medicina. 2010;46(6):415–420. doi:10.3390/medicina46060058

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Milanović Z, Sporis G, Trajković N, Fiorentini F. Differences in agility performance between futsal and soccer players. Sport Sci. 2011;2:55–59.

    • Search Google Scholar
    • Export Citation
  • 26.

    Slawinski J, Termoz N, Rabita G, et al. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand J Med Sci Sports. 2017;27(1):45–54. PubMed ID: 26644061 doi:10.1111/sms.12627

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Jones B, Weaving D, Tee J, et al. Bigger, stronger, faster, fitter: the differences in physical qualities of school and academy rugby union players. J Sports Sci. 2018;36(21):2399–2404. PubMed ID: 29608414 doi:10.1080/02640414.2018.1458589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Baker D. Comparison of upper-body strength and power between professional and college-aged rugby league players. J Strength Cond Res. 2001;15(1):30–35. PubMed ID: 11708703

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641–656. PubMed ID: 26660758 doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Wisløff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–288. doi:10.1136/bjsm.2002.002071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nakamura FY, Pereira LA, Abad CCC, et al. Differences in physical performance between U-20 and senior top-level Brazilian futsal players. J Sports Med Phys Fitness. 2015;56(11):1289–1297. PubMed ID: 26022747

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Shalfawi SA, Haugen T, Jakobsen TA, Enoksen E, Tønnessen E. The effect of combined resisted agility and repeated sprint training vs. strength training on female elite soccer players. J Strength Cond Res. 2013;27(11):2966–2972. PubMed ID: 23442286 doi:10.1519/JSC.0b013e31828c2889

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Buchheit M, Samozino P, Glynn JA, et al. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014;32(20):1906–1913. PubMed ID: 25356503 doi:10.1080/02640414.2014.965191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Mendiguchia J, Edouard P, Samozino P, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535–541. PubMed ID: 26648237 doi:10.1080/02640414.2015.1122207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Mendiguchia J, Samozino P, Brughelli M, Schmikli S, Morin JB, Mendez-Villanueva A. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med. 2014;35(8):690–695. PubMed ID: 24424959 doi:10.1055/s-0033-1363192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nagahara R, Morin JB, Koido M. Impairment of sprint mechanical properties in an actual soccer match: a pilot study. Int J Sports Physiol Perform. 2016;11(7):893–898. PubMed ID: 26791405 doi:10.1123/ijspp.2015-0567

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Haugen TA. Soccer seasonal variations in sprint mechanical properties and vertical jump performance. Kinesiology. 2018;50(1):102–108.

All Time Past Year Past 30 Days
Abstract Views 347 347 45
Full Text Views 43 43 7
PDF Downloads 16 16 3