Relationship Between Various Training-Load Measures in Elite Cyclists During Training, Road Races, and Time Trials

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: The relationship between various training-load (TL) measures in professional cycling is not well explored. This study investigated the relationship between mechanical energy spent (in kilojoules), session rating of perceived exertion (sRPE), Lucia training impulse (LuTRIMP), and training stress score (TSS) in training, races, and time trials (TT). Methods: For 4 consecutive years, field data were collected from 21 professional cyclists and categorized as being collected in training, racing, or TTs. Kilojoules (kJ) spent, sRPE, LuTRIMP, and TSS were calculated, and the correlations between the various TLs were made. Results: 11,655 sessions were collected, from which 7596 sessions had heart-rate data and 5445 sessions had an RPE score available. The r between the various TLs during training was almost perfect. The r between the various TLs during racing was almost perfect or very large. The r between the various TLs during TTs was almost perfect or very large. For all relationships between TSS and 1 of the other measurements of TL (kJ spent, sRPE, and LuTRIMP), a significant different slope was found. Conclusion: kJ spent, sRPE, LuTRIMP, and TSS all have a large or almost perfect relationship with each other during training, racing, and TTs, but during racing, both sRPE and LuTRIMP have a weaker relationship with kJ spent and TSS. Furthermore, the significant different slope of TSS vs the other measurements of TL during training and racing has the effect that TSS collected in training and road races differs by 120%, whereas the other measurements of TL (kJ spent, sRPE, and LuTRIMP) differ by only 73%, 67%, and 68%, respectively.

The authors are with the Dept of Human Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands. Foster and de Koning are also with the Dept of Exercise and Sport Science, University of Wisconsin–La Crosse, La Crosse, WI.

de Koning (j.j.de.koning@vu.nl) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Foster CDaines EHector LSnyder ACWelsh R. Athletic performance in relation to training load. Wis Med J. 1996;95:370374. PubMed ID: 8693756

  • 2.

    Meeusen RDuclos MFoster Cet al. Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine. Med Sci Sports Exerc. 2013;45:186205. PubMed ID: 23247672 doi:10.1249/MSS.0b013e318279a10a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hulin BTGabbett TJBlanch PChapman PBailey DOrchard JW. Spikes in acute workload are associated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014;48:708712. PubMed ID: 23962877 doi:10.1136/bjsports-2013-092524

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Morton RHFitz-Clarke JRBanister EW. Modeling human performance in running. J Appl Physiol. 1990;69:11711177. PubMed ID: 2246166 doi:10.1152/jappl.1990.69.3.1171

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Fitz-Clarke JRMorton RHBanister EW. Optimizing athletic performance by influence curves. J Appl Physiol. 1991;71:11511158. PubMed ID: 1757312 doi:10.1152/jappl.1991.71.3.1151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Mujika I. Intense training: the key to optimal performance before and during the taper. Scand J Med Sci Sports. 2010;20(suppl 2):2431. PubMed ID: 20840559 doi:10.1111/j.1600-0838.2010.01189.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Viru AViru M. Nature of training effects. In: Viru AViru M eds. Exercise and Sports Science. Philadelphia, PA: Lippincott Williams & Wilkins; 2000:6795.

    • Search Google Scholar
    • Export Citation
  • 8.

    Hopkins WG. Quantification of training in competitive sports. Methods and applications. Sports Med. 1991;12:161183. PubMed ID: 1784872 doi:10.2165/00007256-199112030-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Banister EWCarter JBZarkadas PC. Training theory and taper: validation in triathlon athletes. Eur J Appl Physiol Occup Physiol. 1999;79:182191. PubMed ID: 10029340 doi:10.1007/s004210050493

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Borresen JLambert MI. Quantifying training load: a comparison of subjective and objective methods. Int J Sports Physiol Perform. 2008;3:1630. PubMed ID: 19193951 doi:10.1123/ijspp.3.1.16

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sanders DAbt GHesselink MKMyers TAkubat I. Methods of monitoring training load and their relationships to changes in fitness and performance in competitive road cyclists. Int J Sports Physiol Perform. 2017;12(5):668675. PubMed ID: 28095061 doi:10.1123/ijspp.2016-0454

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lucia AHoyos JChicharro JL. Physiology of professional road cycling. Sports Med. 2001;31:325337. PubMed ID: 11347684 doi:10.2165/00007256-200131050-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Lucia AHoyos JSantalla AEarnest CChicharro JL. Tour de France versus Vuelta a Espana: which is harder? Med Sci Sports Exerc. 2003;35:872878. PubMed ID: 12750600 doi:10.1249/01.MSS.0000064999.82036.B4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Borresen JLambert MI. The quantification of training load, the training response and the effect on performance. Sports Med. 2009;39:779795. PubMed ID: 19691366 doi:10.2165/11317780-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lambert MIMbambo ZHSt Clair Gibson A. Heart rate during training and competition for long-distance running. J Sports Sci. 1998;16(suppl):8590. PubMed ID: 22587721 doi:10.1080/026404198366713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Bagger MPetersen PHPedersen PK. Biological variation in variables associated with exercise training. Int J Sports Med. 2003;24:433440. PubMed ID: 12905092 doi:10.1055/s-2003-41180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Foster CHector LLWelsh RSchrager MGreen MASnyder AC. Effects of specific versus cross-training on running performance. Eur J Appl Physiol Occup Physiol. 1995;70:367372. PubMed ID: 7649149 doi:10.1007/BF00865035

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2:9298. PubMed ID: 5523831

  • 19.

    Herman LFoster CMaher MAMikat RPPorcari JP. Validity and reliability of the session RPE method for monitoring exercise training intensity. South Afr J Sports Med. 2006;18:4. doi:10.17159/2078-516X/2006/v18i1a245

    • Search Google Scholar
    • Export Citation
  • 20.

    Rodriguez-Marroyo JAVilla GGarcia-Lopez JFoster C. Comparison of heart rate and session rating of perceived exertion methods of defining exercise load in cyclists. J Strength Cond Res. 2012;26:22492257. PubMed ID: 21997452 doi:10.1519/JSC.0b013e31823a4233

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Christen JFoster CPorcari JPMikat RP. Temporal robustness of the session rating of perceived exertion. Int J Sports Physiol Perform. 2016;11:10881093. PubMed ID: 26999454 doi:10.1123/ijspp.2015-0438

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Crowcroft SDuffield RMcCleave ESlattery KWallace LKCoutts AJ. Monitoring training to assess changes in fitness and fatigue: the effects of training in heat and hypoxia. Scand J Med Sci Sports. 2015;25(suppl 1):287295. PubMed ID: 25943680 doi:10.1111/sms.12364

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Logan-Sprenger HMHeigenhauser GJJones GLSpriet LL. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males. Physiol Rep. 2015;3:e12483. PubMed ID: 26296770 doi:10.14814/phy2.12483

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hunter ACoggan A. Training and Racing With a Power Meter. 2nd ed. Boulder, CO: Velopress; 2010.

  • 25.

    Sanders DHeijboer MHesselink MKCMyers TAkubat I. Analysing a cycling grand tour: can we monitor fatigue with intensity or load ratios? J Sports Sci. 2018. 36(12):13851391. PubMed ID: 29016241 doi:10.1080/02640414.2017.1388669

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Green JMMcLester JRCrews TRWickwire PJPritchett RCLomax RG. RPE association with lactate and heart rate during high-intensity interval cycling. Med Sci Sports Exerc. 2006;38:167172. PubMed ID: 16394970 doi:10.1249/01.mss.0000180359.98241.a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Seiler SSylta O. How does interval-training prescription affect physiological and perceptual responses? Int J Sports Physiol Perform. 2017;12:S280S286. PubMed ID: 28051345 doi:10.1123/ijspp.2016-0464

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Foster CFlorhaug JAFranklin Jet al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15:109115. PubMed ID: 11708692

  • 29.

    Seiler STTønnessen E. Intervals, thresholds, and long slow distance: the role of intensity and duration in endurance training. Sportscience. 2009;30:3253.

    • Search Google Scholar
    • Export Citation
  • 30.

    Seiler S. What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Perform. 2010;5:276291. PubMed ID: 20861519 doi:10.1123/ijspp.5.3.276

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Hopkins WG. A new view of statistics. 2002. http://www.sportsci.org/resource/stats/sscorr.html. Accessed October 1 2016.

  • 32.

    Padilla SMujika ISantisteban JImpellizzeri FMGoiriena JJ. Exercise intensity and load during uphill cycling in professional 3-week races. Eur J Appl Physiol. 2008;102:431438. PubMed ID: 17978835 doi:10.1007/s00421-007-0602-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Earnest CPFoster CHoyos JMuniesa CASantalla ALucia A. Time trial exertion traits of cycling’s grand tours. Int J Sports Med. 2009;30:240244. PubMed ID: 19199205 doi:10.1055/s-0028-1105948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Nimmerichter AWilliams CBachl NEston R. Evaluation of a field test to assess performance in elite cyclists. Int J Sports Med. 2010;31:160166. PubMed ID: 20221996 doi:10.1055/s-0029-1243222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Wallace LKSlattery KMImpellizzeri FMCoutts AJ. Establishing the criterion validity and reliability of common methods for quantifying training load. J Strength Cond Res. 2014;28:23302337. PubMed ID: 24662229 doi:10.1519/JSC.0000000000000416

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Halson SLBridge MWMeeusen Ret al. Time course of performance changes and fatigue markers during intensified training in trained cyclists. J Appl Physiol. 2002;93:947956. PubMed ID: 12183490 doi:10.1152/japplphysiol.01164.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rodriguez-Marroyo JAGarcia-Lopez JJuneau CEVilla JG. Workload demands in professional multi-stage cycling races of varying duration. Br J Sports Med. 2009;43:180185. PubMed ID: 18065442 doi:10.1136/bjsm.2007.043125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rodriguez-Marroyo JAVilla JGPernia RFoster C. Decrement in professional cyclists’ performance after a grand tour. Int J Sports Physiol Perform. 2017;12(10):13481355. PubMed ID: 28338363 doi:10.1123/ijspp.2016-0294

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Achten JJeukendrup AE. Heart rate monitoring: applications and limitations. Sports Med. 2003;33:517538. PubMed ID: 12762827 doi:10.2165/00007256-200333070-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Arney BEGlover RFusco ACortis Cet al. Comparison of rating of perceived exertion scales during incremental and interval exercise. Kinesiology. In Press.

    • Search Google Scholar
    • Export Citation
  • 41.

    Yeo WKLessard SJChen ZPet al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105:15191526. PubMed ID: 18801964 doi:10.1152/japplphysiol.90540.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hansen AKFischer CPPlomgaard PAndersen JLSaltin BPedersen BK. Skeletal muscle adaptation: training twice every second day vs. training once daily. J Appl Physiol. 2005;98:9399. PubMed ID: 15361516 doi:10.1152/japplphysiol.00163.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 101 101 37
Full Text Views 11 11 2
PDF Downloads 6 6 2
Altmetric Badge
PubMed
Google Scholar
Cited By