Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: In recent years (2011–2016), men’s 800-m championship running performances have required greater speed than previous eras (2000–2009). The “anaerobic speed reserve” (ASR) may be a key differentiator of this performance, but profiles of elite 800-m runners and their relationship to performance time have yet to be determined. Methods: The ASR—determined as the difference between maximal sprint speed (MSS) and predicted maximal aerobic speed (MAS)—of 19 elite 800- and 1500-m runners was assessed using 50-m sprint and 1500-m race performance times. Profiles of 3 athlete subgroups were examined using cluster analysis and the speed reserve ratio (SRR), defined as MSS/MAS. Results: For the same MAS, MSS and ASR showed very large negative (both r = −.74 ± .30, ±90% confidence limits; very likely) relationships with 800-m performance time. In contrast, for the same MSS, ASR and MAS had small negative relationships (both r = −.16 ± .54; possibly) with 800-m performance. ASR, 800-m personal best, and SRR best defined the 3 subgroups along a continuum of 800-m runners, with SRR values as follows: 400–800 m ≥ 1.58, 800 m ≤ 1.57 to ≥ 1.48, and 800–1500 m ≤ 1.47 to ≥ 1.36. Conclusion: MSS had the strongest relationship with 800-m performance, whereby for the same MSS, MAS and ASR showed only small relationships to differences in 800-m time. Furthermore, the findings support the coaching observation of three 800-m subgroups, with the SRR potentially representing a useful and practical tool for identifying an athlete’s 800-m profile. Future investigations should consider the SRR framework and its application for individualized training approaches in this event.

Sandford, Allen, Kilding, and Laursen are with the Sport Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. Sandford and Ross are with High Performance Sport New Zealand and Athletics New Zealand, Auckland, New Zealand. Sandford is also with the Millennium Inst of Sport & Health in Auckland.

Sandford (gareth.sandford@hpsnz.org.nz) is corresponding author.
  • 1.

    Sandford GN, Pearson S, Allen SV, et al. Tactical behaviors in men’s 800-m Olympic and world-championship medalists: a changing of the guard. Int J Sports Physiol Perform. 2018;13(2):246249. PubMed ID: 28488905 doi:10.1123/ijspp.2016-0780

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ingham SA, Whyte GP, Pedlar C, Bailey DM, Dunman N, Nevill AM. Determinants of 800-m and 1500-m running performance using allometric models. Med Sci Sports Exerc. 2008;40(2):345350. PubMed ID: 18202566 doi:10.1249/mss.0b013e31815a83dc

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bachero-Mena B, Pareja-Blanco F, Rodríguez-Rosell D, Yáñez-García JM, Mora-Custodio R, González-Badillo JJ. Relationships between sprint, jumping and strength abilities, and 800 m performance in male athletes of national and international levels. J Hum Kinet. 2017;58(1):187195. doi:10.1515/hukin-2017-0076

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Schumacher YO, Mueller P. The 4000-m team pursuit cycling world record: theoretical and practical aspects. Med Sci Sports Exerc. 2002;34(6):10291036. PubMed ID: 12048333 doi:10.1097/00005768-200206000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ingham SA, Fudge BW, Pringle JS. Training distribution, physiological profile, and performance for a male international 1500-m runner. Int J Sports Physiol Perform. 2012;7(2):193195. PubMed ID: 22634971 doi:10.1123/ijspp.7.2.193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Horwill FJ. Solving the 800 m puzzle. In:  Modern Athlete and Coach (vol 343). Adelaide1996;4851.

  • 7.

    Gamboa J, Elrick R, Mora A, et al. NSA Round table—Speed in the 800 metres. New Stud Athl. 1996;11(4):722.

  • 8.

    Daniels J. 800 meters. In: Martin B, Julie R, Carla Z. Daniels Running Formula. 2nd ed. Human Kinetics; 2005:201212.

  • 9.

    Tjelta LI. The training of international level distance runners. Int J Sport Sci Coach. 2016;11(1):122134. doi:10.1177/1747954115624813

  • 10.

    Sanders D, Heijboer M, Akubat I, Meijer K, Hesselink M. Predicting high-power performance in professional cyclists. Int J Sports Physiol Perform. 2017;12(3):410413. PubMed ID: 27248365 doi:10.1123/ijspp.2016-0134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Bellenger CR, Fuller JT, Nelson MJ, Hartland M, Buckley JD, Debenedictis TA. Predicting maximal aerobic speed through set distance time-trials. Eur J Appl Physiol. 2015;115(12):25932598. PubMed ID: 26242778 doi:10.1007/s00421-015-3233-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Blondel N, Berthoin S, Billat V, Lensel G. Relationship between run times to exhaustion at 90, 100, 120, and 140% of vVO2max and velocity expressed relatively to critical velocity and maximal velocity. Int J Sports Med. 2001;22(1):2733. PubMed ID: 11258638 doi:10.1055/s-2001-11357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Weyand P, Lin J, Bundle M. Sprint performance-duration relationships are set by the fractional duration of external force application. AJP Regul Integr Comp Physiol. 2006;290:758765. doi:10.1152/ajpregu.00562.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running: simple method to compute sprint mechanics. Scand J Med Sci Sports. 2015;26:648658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Simperingham KD, Cronin JB, Pearson SN, Ross A. Reliability of horizontal force-velocity-power profiling during short sprint-running accelerations using radar technology. Sport Biomech. 2017;3141:112. doi:10.1080/14763141.2017.1386707

    • Search Google Scholar
    • Export Citation
  • 16.

    Mendez-Villanueva A, Buchheit M, Kuitunen S, Poon TK, Simpson B, Peltola E. Is the relationship between sprinting and maximal aerobic speeds in young soccer players affected by maturation? Pediatr Exerc Sci. 2010;22:497510. PubMed ID: 21242600 doi:10.1123/pes.22.4.497

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Glazier PS. Towards a grand unified theory of sports performance. Hum Mov Sci. 2015;56:118. doi:10.1016/j.humov.2015.08.001

  • 19.

    Raysmith BP, Drew MK. Performance success or failure is influenced by weeks lost to injury and illness in elite Australian track and field athletes: a 5-year prospective study. J Sci Med Sport. 2016;19(10):778783. PubMed ID: 26839047 doi:10.1016/j.jsams.2015.12.515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Jones A, Whipp B. Bioenergetic constraints on tactical decision making in middle distance running. Br J Sports Med. 2002;36:102104. PubMed ID: 11916890 doi:10.1136/bjsm.36.2.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Spencer MR, Gastin PB. Energy system contribution during 200- to 1500-m running in highly trained athletes. Med Sci Sports Exerc. 2001;33(1):157162. PubMed ID: 11194103 doi:10.1097/00005768-200101000-00024

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport: what is the critical power concept? Int J Sports Physiol Perform. 2011;6:128136. PubMed ID: 21487156 doi:10.1123/ijspp.6.1.128

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Davison RR, van Someren KA, Jones AM. Physiological monitoring of the Olympic athlete. J Sports Sci. 2009;27(13):14331442. PubMed ID: 19813137 doi:10.1080/02640410903045337

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Nummela A, Mero A, Stray-Gundersen J, Rusko H. Important determinants of anaerobic running performance in male athletes and non-athletes. Int J Sports Med. 1996;17(suppl 2):S91S96. doi:10.1055/s-2007-972907

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Buchheit M, Hader K, Mendez-Villanueva A. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter? Front Exerc Physiol. 2012;3:406. doi:10.3389/fphys.2012.00406

    • Search Google Scholar
    • Export Citation
  • 26.

    Weyand PG, Davis J. Running performance has a structural basis. J Exp Biol. 2005;208(14):26252631. doi:10.1242/jeb.01609

  • 27.

    van der Zwaard S, van der Laarse WJ, Weide G, et al. Critical determinants of combined sprint and endurance performance: an integrative analysis from muscle fiber to the human body. FASEB J. 2018;32(4):21102123. doi:10.1096/fj.201700827R

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Crow MT, Kushmerick MJ. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982;79(1):147166. PubMed ID: 7061985 doi:10.1085/jgp.79.1.147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Jackman MR, Willis WT. Characteristics of mitochondria isolated from type I and type IIb skeletal muscle characteristics of mitochondria isolated from type I and type IIb skeletal muscle. Am J Physiol. 1996;270(39):C673C678. doi:10.1152/ajpcell.1996.270.2.C673

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pringle JS, Doust JH, Carter H, et al. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol. 2003;89(3-4):289300. PubMed ID: 12736837 doi:10.1007/s00421-003-0799-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Baguet A, Everaert I, Hespel P, Petrovic M, Achten E, Derave W. A new method for non-invasive estimation of human muscle fiber type composition. PLoS ONE. 2011;6(7):e21956. doi:10.1371/journal.pone.0021956

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Denison J. Inhibiting progress: the record of the four-minute mile. Sport Hist. 2006;26(2):280288. doi:10.1080/17460260600786930

  • 33.

    Hopkins WG. Competitive performance of elite track and field athletes. Variability and smallest worthwhile enhancements. Sportscience. 2005;9:1720.

    • Search Google Scholar
    • Export Citation
  • 34.

    Crouter SE, Antczak A, Hudak JR, DellaValle DM, Haas JD. Accuracy and reliability of the ParvoMedics TrueOne 2400 and MedGraphics VO2000 metabolic systems. Eur J Appl Physiol. 2006;98(2):139151. PubMed ID: 16896734 doi:10.1007/s00421-006-0255-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sports Physiol Perform. 2014;9(6):931935. PubMed ID: 24622815 doi:10.1123/ijspp.2013-0507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Mann TN, Lamberts RP, Lambert MI. High responders and low responders: factors associated with individual variation in response to standardized training. Sport Med. 2014;44(8):11131124. doi:10.1007/s40279-014-0197-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Buchheit M. The 30–15 intermittent fitness test: 10 year review. Myorobie J. 2010;1(Top 14):19. http://martin-buchheit.net/Dossiers/Buchheit-30-15IFT-10_yrs_review_(2000-2010).pdf.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 947 682 72
Full Text Views 39 20 1
PDF Downloads 23 15 1