Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $114.00

1 year online subscription

USD  $152.00

Student 2 year online subscription

USD  $217.00

2 year online subscription

USD  $289.00

Purpose: To compare the effects of natural altitude training (NAT) and simulated (SIM) live high:train low altitude training on road-race walking performance (min), as well as treadmill threshold walking speed (km·h−1) at 4 mmol·L−1 and maximal oxygen consumption, at 1380 m. Methods: Twenty-two elite-level male (n = 15) and female (n = 7) race walkers completed 14 d of NAT at 1380 m (n = 7), SIM live high:train low at 3000:600 m (n = 7), or control conditions (600-m altitude; CON, n = 8). All preintervention and postintervention testing procedures were conducted at 1380 m and consisted of an incremental treadmill test, completed prior to a 5 × 2-km road-race walking performance test. Differences between groups were analyzed via mixed-model analysis of variance and magnitude-based inferences, with a substantial change detected with >75% likelihood of exceeding the smallest worthwhile change. Results: The improvement in total performance time for the 5 × 2-km test in NAT was not substantially different from SIM but was substantially greater (85% likely) than CON. The improvement in percentage decrement in the 5 × 2-km performance test in NAT was greater than in both SIM (93% likely) and CON (93% likely). The increase in maximal oxygen consumption was substantially greater (91% likely) in NAT than in SIM. Improvement in threshold walking speed was substantially greater than CON for both SIM (91% likely) and NAT (90% likely). Conclusions: Both NAT and SIM may allow athletes to achieve reasonable acclimation prior to competition at low altitude.

Carr is with the Centre for Sport Research, Deakin University, Burwood, VIC, Australia. Garvican-Lewis, Saunders, and Gore are with Physiology, and Humberstone, the Combat Centre, Australian Inst of Sport, Bruce, ACT, Australia. Garvican-Lewis is with the Mary Mackillop Inst for Health Research, Australian Catholic University, Melbourne, VIC, Australia. Vallance is with Physical Preparation, Maribyrnong Sports Academy, Maribyrnong, VIC, Australia, and Athletics Australia, Albert Park, VIC, Australia. Drake is with England Athletics, Birmingham, United Kingdom. Gore is with the Exercise Physiology Laboratory, Flinders University, Bedford Park, SA, Australia.

Carr (amelia.carr@deakin.edu.au) is corresponding author.
  • 1.

    Millet G, Roels B, Schmitt L, Woorons X, Richalet J. Combining hypoxic methods for peak performance. Sports Med. 2010;40(1):125. PubMed ID: 20020784 doi:10.2165/11317920-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Saunders P, Pyne D, Gore C. Endurance training at altitude. High Alt Med Biol. 2009;10(2):135148. PubMed ID: 19519223 doi:10.1089/ham.2008.1092

  • 3.

    Bärtsch P, Saltin B, Dvorak J. Consensus statement on playing football at different altitude. Scand J Med Sci Sports. 2008;18(suppl 1):9699. doi:10.1111/j.1600-0838.2008.00837.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gore C, McSharry P, Hewitt A, Saunders P. Preparation for football competition at moderate to high altitude. Scand J Med Sci Sports. 2008;18(suppl 1):8595. doi:10.1111/j.1600-0838.2008.00836.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Hollings S, Hopkins W, Hume P. Environmental and venue-related factors affecting the performance of elite male track athletes. Eur J Sport Sci. 2012;12(3):201206. doi:10.1080/17461391.2011.552640

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Wehrlin J, Hallén J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96:404412. PubMed ID: 16311764 doi:10.1007/s00421-005-0081-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Garvican L, Hammond K, Varley M, Gore C, Billaut F, Aughey R. Lower running performance and exacerbated fatigue in soccer played at 1600 m. Int J Sports Physiol Perform. 2014;9:397404. PubMed ID: 23751901 doi:10.1123/ijspp.2012-0375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hahn A, Gore C. The effect of altitude on cycling performance: a challenge to traditional concepts. Sports Med. 2001;31(7):533557. PubMed ID: 11428690 doi:10.2165/00007256-200131070-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Mazzeo R. Physiological responses to exercise at altitude: an update. Sports Med. 2008;38(1):18. PubMed ID: 18081363 doi:10.2165/00007256-200838010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Adams W, Bernauer E, Dill D, Bomar J. Effects of equivalent sea-level and altitude training on VO2max and running performance. J Appl Physiol. 1975;39(2):262266. PubMed ID: 1176388 doi:10.1152/jappl.1975.39.2.262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Saunders P, Garvican-Lewis L, Schmidt W, Gore C. Relationship between changes in hemoglobin mass and maximal oxygen uptake after hypoxic exposure. Br J Sports Med. 2013;47:2630. PubMed ID: 24282203 doi:10.1136/bjsports-2013-092841

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Garvican-Lewis L, Halliday I, Abbiss C, Saunders P, Gore C. Altitude exposure at 1800 m increases hemoglobin mass in distance runners. J Sports Sci Med. 2015;14:413417. PubMed ID: 25983592

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gore C, Sharpe K, Garvican-Lewis L, et al. Altitude training and hemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med. 2013;47:i31i39. PubMed ID: 24282204 doi:10.1136/bjsports-2013-092840

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Foss J, Constantini K, Mickleborough T, Chapman R. Short-term arrival strategies for endurance exercise performance at moderate altitude. J Appl Physiol. 2017;123:12581265. PubMed ID: 28818999 doi:10.1152/japplphysiol.00314.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Chapman R, Laymon A, Levine B. Timing of arrival and pre-acclimatization strategies for the endurance athlete competing at moderate to high altitudes. High Alt Med Biol. 2013;14(4):319324. PubMed ID: 24377334 doi:10.1089/ham.2013.1022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rusko H, Tikkanen H, Peltonen J. Altitude and endurance training. J Sports Sci. 2004;22:928945. PubMed ID: 15768726 doi:10.1080/02640410400005933

  • 17.

    Levine B, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102112. PubMed ID: 9216951 doi:10.1152/jappl.1997.83.1.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hauser A, Schmitt L, Troesch S, et al. Similar hemoglobin mass response in hypobaric and normobaric hypoxia in athletes. Med Sci Sports Exerc. 2016;48:734741. PubMed ID: 26540262 doi:10.1249/MSS.0000000000000808

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Millet G, Faiss RF. Point: counterpoint: hypobaric hypoxia induces/does not induce different responses from normobaric hypoxia. J Appl Physiol. 2012;112:17831787. PubMed ID: 22267386 doi:10.1152/japplphysiol.00067.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Millet GP, Chapman RF, Girard O, Brocherie F. Is live high–train low altitude training relevant for elite athletes?: flawed analysis from inaccurate data [published online ahead of print December 15, 2017]. Br J Sports Med. doi:10.1136/bjsports-2017-098083

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Robach P, Lundby C. Is live high–train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports. 2012;22:303305. PubMed ID: 22612361 doi:10.1111/j.1600-0838.2012.01457.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bonetti D, Hopkins W. Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med. 2009;39(2):107127. PubMed ID: 19203133 doi:10.2165/00007256-200939020-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Garvican-Lewis L, Sharpe K, Gore C. Time for a new metric for hypoxic dose? J Appl Physiol. 2016;121:352355. PubMed ID: 26917695 doi:10.1152/japplphysiol.00579.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bureau of Meteorology. http://www.bom.gov.au/. 2018. Accessed September 04, 2018.

  • 25.

    Spencer M, Fitzsimons M, Dawson B, Bishop D, Goodman C. Reliability of a repeated-sprint test for field-hockey. J Sci Med Sport. 2006;9:181184. PubMed ID: 16581293 doi:10.1016/j.jsams.2005.05.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Woods A, Garvican-Lewis L, Lundy B, Rice A, Thompson K. New approaches to determine fatigue in elite athletes during intensified training: resting metabolic rate and pacing profile. PLoS ONE. 2017;12(3):e0173807. PubMed ID: 28296943 doi:10.1371/journal.pone.0173807

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hopkins W, Marshall S, Batterham A, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Chapman R, Karlsen T, Ge R, Stray-Gundersen J, Levine B. Living altitude influences endurance exercise performance change over time at altitude. J Appl Physiol. 2016;120:11511158. PubMed ID: 26968028 doi:10.1152/japplphysiol.00909.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Vernillo G, Agnello L, Drake A, Padulo J, Piacentini M, La Torre A. An observational study on the perceptive and physiological variables during a 10, 000-m race walking competition. J Strength Cond Res. 2012;26(10):27412747. PubMed ID: 22158089 doi:10.1519/JSC.0b013e318242a33c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hanley B. An analysis of racing profiles of world-class racewalkers. Int J Sports Physiol Perform. 2013;8:435441. PubMed ID: 23237850 doi:10.1123/ijspp.8.4.435

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Chapman R, Stray-Gundersen J, Levine B. Individual variation in response to altitude training. J Appl Physiol. 1998;85(4):14481456. PubMed ID: 9760340 doi:10.1152/jappl.1998.85.4.1448

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pugliese L, Serpiello F, Millet G, La Torre A. Training diaries during altitude training camp in two Olympic champions: an observational case study. J Sports Sci Med. 2014;13:666672. PubMed ID: 25177197

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Saunders P, Ahlgrim C, Vallance B, et al. An attempt to quantify the placebo effect from a three-week simulated altitude training camp in elite race walkers. Int J Sports Physiol Perform. 2010;5:521534. PubMed ID: 21266736 doi:10.1123/ijspp.5.4.521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wachsmuth N, Kley M, Spielvogel H, et al. Changes in blood gas transport of altitude native soccer players near sea-level and sea-level native soccer players at altitude (ISA3600). Br J Sports Med. 2013;47:i93i99. PubMed ID: 24282216 doi:10.1136/bjsports-2013-092761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Buchheit M, Simpson B, Garvican-Lewis L, et al. Wellness, fatigue and physical performance acclimatisation to a 2-week soccer camp at 3600 m (ISA3600). Br J Sports Med. 2013;47:i100i106. PubMed ID: 24282195 doi:10.1136/bjsports-2013-092749

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gore C, Clark S, Saunders P. Nonhematological mechanisms of improved sea-level performance after hypoxic exposure. Med Sci Sports Exerc. 2007;39(9):16001609. PubMed ID: 17805094 doi:10.1249/mss.0b013e3180de49d3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Mazzeo R. Altitude, exercise and immune function. Exerc Immumol Rev. 2005;11:616. PubMed ID: 16385840

All Time Past Year Past 30 Days
Abstract Views 1918 953 44
Full Text Views 88 23 2
PDF Downloads 69 28 4