Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Skeletal-muscle function can be evaluated using force-times curves generated via the isometric midthigh pull (IMTP). Various sampling frequencies (500–1000 Hz) have been used for IMTP assessments; however, no research has investigated the influence of sampling frequency on IMTP kinetics. Therefore, the purpose of this study was to investigate the influence of sampling frequency on kinetic variables during the IMTP, including peak force, time-specific force values (100, 150, and 200 ms), and rate of force development (RFD) at 3 time bands (0–100, 0–150, 0–200 ms). Methods: Academy rugby league players (n = 30, age 17.5 ± 1.1 y, height 1.80 ± 0.06 m, mass 85.4 ± 10.3 kg) performed 3 IMTP trials on a force platform sampling at 2000 Hz, which was subsequently down-sampled to 1500, 1000, and 500 Hz for analysis. Results: Intraclass correlation coefficients (ICC) and coefficients of variation (CV) demonstrated high within-session reliability for all force and RFD variables across all sampling frequencies (ICC ≥ .80, CV ≤ 14.4%) except RFD 0–100 and 0–150, which demonstrated slightly greater levels of variance (CV = 18.0–24.1%). Repeated-measures analysis of variance revealed no significant differences (P > .05, Cohen d ≤ 0.0171) in kinetic variables between sampling frequencies. Overall, high reliability was observed across all sampling frequencies for peak force, time-specific force, and RFD 0- to 200-ms variables, with no significant differences (P > .05) for each kinetic variable across sampling frequencies. Conclusions: Practitioners and scientists may consider sampling as low as 500 Hz when measuring peak force, time-specific force values, and RFD at predetermined time bands during the IMTP for accurate and reliable data.

The authors are with the Human Performance Laboratory, University of Salford, Greater Manchester, UK.

Address author correspondence to Thomas Dos’Santos at t.dossantos@hotmail.co.uk.
  • 1.

    Sheppard JM, Nimphius S, Haff GG, et al. Development of a comprehensive performance-testing protocol for competitive surfers. Int J Sports Physiol Perform. 2013;8(5):490495. PubMed ID: 23319455 doi:10.1123/ijspp.8.5.490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Haff GG, Ruben RP, Lider J, Twine C, Cormie P. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls. J Strength Cond Res. 2015;29(2):386395. PubMed ID: 25259470 doi:10.1519/JSC.0000000000000705

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Haff GG, Jackson JR, Kawamori N, et al. Force-time curve characteristics and hormonal alterations during an eleven-week training period in elite women weightlifters. J Strength Cond Res. 2008;22(2):433446. PubMed ID: 18550958 doi:10.1519/JSC.0b013e31816191be

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Leary BK, Statler J, Hopkins B, et al. The relationship between isometric force-time curve characteristics and club head speed in recreational golfers. J Strength Cond Res. 2012;26(10):26852697. PubMed ID: 22797001 doi:10.1519/JSC.0b013e31826791bf

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Beckham G, Mizuguchi S, Carter C, et al. Relationships of isometric mid-thigh pull variables to weightlifting performance. J Sports Med Phys Fitness. 2013;53(5):573581. PubMed ID: 23903539

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bailey CA, Sato K, Hornsby WG. Predicting offensive performance in collegiate baseball players using isometric force production characteristics. Chin J Sports Biomech. 2013;5(S1):448451.

    • Search Google Scholar
    • Export Citation
  • 7.

    Spiteri T, Nimphius S, Hart NH, Specos C, Sheppard JM, Newton RU. The contribution of strength characteristics to change of direction and agility performance in female basketball athletes. J Strength Cond Res. 2014;28(9):24152423. PubMed ID: 24875426 doi:10.1519/JSC.0000000000000547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Haff GG, Carlock JM, Hartman MJ, et al. Force-time curve characteristics of dynamic and isometric muscle actions of elite women Olympic weightlifters. J Strength Cond Res. 2005;19(4):741748. PubMed ID: 16287343

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Stone MH, Sands WA, Pierce KC, Carlock JON, Cardinale M, Newton RU. Relationship of maximum strength to weightlifting performance. Med Sci Sports Exerc. 2005;37(6):10371043. PubMed ID: 15947731

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Stone MH, Sands WA, Carlock JON, et al. The importance of isometric maximum strength and peak rate-of-force development in sprint cycling. J Strength Cond Res. 2004;18(4):878884. PubMed ID: 15574097

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Nuzzo JL, McBride JM, Cormie P, McCaulley GO. Relationship between countermovement jump performance and multijoint isometric and dynamic tests of strength. J Strength Cond Res. 2008;22(3):699707. PubMed ID: 18438251 doi:10.1519/JSC.0b013e31816d5eda

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Kraska JM, Ramsey MW, Haff GG, et al. Relationship between strength characteristics and unweighted and weighted vertical jump height. Int J Sports Physiol Perform. 2009;4(4):461473. PubMed ID: 20029097

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Stone MH, Sanborn K, O’Bryant HS, et al. Maximum strength-power- performance relationships in collegiate throwers. J Strength Cond Res. 2003;17(4):739745. PubMed ID: 14636111

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McGuigan MR, Newton MJ, Winchester JB, Nelson AG. Relationship between isometric and dynamic strength in recreationally trained men. J Strength Cond Res. 2010;24(9):25702573. PubMed ID: 20683349 doi:10.1519/JSC.0b013e3181ecd381

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Thomas C, Jones PA, Rothwell J, Chiang CY, Comfort P. An investigation into the relationship between maximum isometric strength and vertical jump performance. J Strength Cond Res. 2015;29(8):21762185. PubMed ID: 25647649 doi:10.1519/JSC.0000000000000866

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Comfort P, Jones PA, McMahon JJ, Newton R. Effect of knee and trunk angle on kinetic variables during the isometric midthigh pull: test-retest reliability. Int J Sports Physiol Perform. 2015;10(1):5863. PubMed ID: 24912198 doi:10.1123/ijspp.2014-0077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Juneja H, Verma SK, Khanna GL. Isometric strength and its relationship to dynamic performance: a systematic review. J Exerc Sci Physiother 2010;6:6069.

    • Search Google Scholar
    • Export Citation
  • 18.

    West DJ, Owen NJ, Jones MR, et al. Relationships between force time characteristics of the isometric midthigh pull and dynamic performance in professional rugby league players. J Strength Cond Res. 2011;25(11):30703075. PubMed ID: 21993026 doi:10.1519/JSC.0b013e318212dcd5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Thomas C, Jones PA, Comfort P. Reliability of the Dynamic Strength Index in college athletes. Int J Sports Physiol Perform. 2015;10(5):542545. PubMed ID: 25393233 doi:10.1123/ijspp.2014-0255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Haff GG, Stone M, O’Bryant HS, et al. Force-time dependent characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 1997;11(4):269272.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kawamori N, Rossi SJ, Justice BD, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483491. PubMed ID: 16937959

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Khamoui AV, Brown LE, Nguyen D, et al. Relationship between force-time and velocity-time characteristics of dynamic and isometric muscle actions. J Strength Cond Res. 2011;25(1):198204. PubMed ID: 19966585 doi:10.1519/JSC.0b013e3181b94a7b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    McMaster DT, Gill N, Cronin J, McGuigan M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014;44(5):603623. PubMed ID: 24497158 doi:10.1007/s40279-014-0145-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Owen NJ, Watkins J, Kilduff LP, Bevan HR, Bennett MA. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J Strength Cond Res. 2014;28(6):15521558. PubMed ID: 24276298 doi:10.1519/JSC.0000000000000311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Nyquist H. Certain topics in telegraph transmission theory. Transactions. 1928;47(2):617644.

  • 26.

    Hori N, Newton RU, Kawamori N, McGuigan MR, Kraemer WJ, Nosaka K. Reliability of performance measurements derived from ground reaction force data during countermovement jump and the influence of sampling frequency. J Strength Cond Res. 2009;23(3):874882. PubMed ID: 19387390 doi:10.1519/JSC.0b013e3181a00ca2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Weyand PG, Lin JE, Bundle MW. Sprint performance-duration relationships are set by the fractional duration of external force application. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):758765. PubMed ID: 16254125 doi:10.1152/ajpregu.00562.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):19911999. PubMed ID: 11053354

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Sasaki S, Nagano Y, Kaneko S, Sakurai T, Fukubayashi T. The relationship between performance and trunk movement during change of direction. J Sports Sci Med. 2011;10(1):112118. PubMed ID: 24149303

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Hopkins WG. Reliability from consecutive pairs of trials (Excel spreadsheet). Sportscience. 2000.

  • 31.

    Ashley CD, Weiss LW. Vertical jump performance and selected cphysiological characteristics of women. J Strength Cond Res. 1994;8(1):511.

    • Search Google Scholar
    • Export Citation
  • 32.

    Baumgartner TA, Chung H. Confidence limits for intraclass reliability coefficients. Meas Phys Educ Exerc Sci. 2001;5(3):179188. doi:10.1207/S15327841MPEE0503_4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Rev ed. Hillsdale, NJ: Lawrence Erlbaum; 1977.

  • 34.

    Hopkins WG. A scale of magnitudes for effect statistics. Sportscience. 2002.

  • 35.

    Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G* Power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41(4):11491160. PubMed ID: 19897823 doi:10.3758/BRM.41.4.1149

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Kawamori N, Haff GG. The optimal training load for the development of muscular power. J Strength Cond Res. 2004;18(3):675684. PubMed ID: 15320680

  • 37.

    Haff GG, Nimphius S. Training principles for power. Strength Cond J. 2012;34(6):212. doi:10.1519/SSC.0b013e31826db467

  • 38.

    Newton RU, Kraemer WJ. Developing explosive muscular power: implications for a mixed methods training strategy. Strength Cond J. 1994;16(5):2031. doi:10.1519/1073-6840(1994)016<0020:DEMPIF>2.3.CO;2

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 224 203 17
Full Text Views 10 5 0
PDF Downloads 6 2 0