Low Doses of Caffeine: Enhancement of Physical Performance in Elite Adolescent Male Soccer Players

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Context: High doses of ∼6 mg·kg−1 body mass have improved performance during intermittent running, jumping, and agility protocols. However, there are sparse data on low doses of caffeine, especially in elite adolescent soccer players. Methods: A total of 15 elite youth soccer players (177.3 [4.8] cm, 66.9 [7.9] kg, and 16 [1] y) participated in the study, consuming 1, 2, or 3 mg·kg−1 caffeine in a gelatin capsule or a 2-mg·kg−1 placebo in a single-blind, randomized, crossover study design. Testing consisted of a 20-m sprint, arrowhead agility (change of direction [CoD] right or left), countermovement jump (CMJ), and Yo-Yo Intermittent Recovery Test Level 1 (Yo-Yo IR1). Postexercise CMJ performance was assessed as participants exited the Yo-Yo IR1. Data were analyzed using a Bayesian multilevel regression model to provide explained variance and probabilities of improvement (P = %). Results: Compared with placebo, 3 mg·kg−1 caffeine presented the highest probabilities of change across a range of tests (mean [SD], P = %). Times for 20-m sprint were 3.15 (0.10) s vs 3.18 (0.09) s (P = 73%), CoD-right times were 8.43 (0.24) s vs 8.55 (0.25) s (P = 99%), CoD-left times were 8.44 (0.22) s vs 8.52 (0.18) s (P = 85%), Yo-Yo IR1 distance was 2440 (531) m vs 2308 (540) m (P = 15%), and preexercise CMJ height was 41.6 (7.2) cm vs 38 (8.5) cm (P = 96%). Postexercise CMJ was higher with 3 mg·kg−1 than with placebo (42.3 [8] cm vs 36.6 [8] cm; P = 100%). Doses of 1 or 2 mg·kg−1 caffeine also demonstrated the ability to enhance performance but were task dependent. Conclusion: Low doses of caffeine improve performance but are dose and task dependent. A dose of 3 mg·kg−1 caffeine improved performance across the majority of tests with potential to further improve postexercise CMJ height.

Ellis and Myers are with Newman University, Birmingham, United Kingdom. Noon and Clarke are with Coventry University, Coventry, United Kingdom.

Ellis (matthewellis529@gmail.com) is corresponding author.
  • 1.

    Van Winckel J, Tenney D, Helsen W, McMillan K, Meert JP, Bradley P. Fitness in Soccer—The Science and Practical Application. India: Moveo Ergo Sum. 2013.

    • Search Google Scholar
    • Export Citation
  • 2.

    Mohr M, Nielsen JJ, Bangsbo J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol. 2011;111:13721379. PubMed ID: 21836046 doi:10.1152/japplphysiol.01028.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ahrens JN, Crixell SH, Lloyd LK, Walker JL. The physiological effects of caffeine in women during treadmill walking. J Strength Cond Res. 2007;21(1):164168. PubMed ID: 17313293 doi:10.1519/00124278-200702000-00029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Richardson DL, Clarke ND. Effect of coffee and caffeine ingestion on resistance exercise performance. J Strength Cond Res. 2016;30(10):28922900. PubMed ID: 26890974 doi:10.1519/JSC.0000000000001382

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Benowitz NL. Clinical pharmacology of caffeine. Annu Rev Med. 1990;41:277288. PubMed ID: 2184730 doi:10.1146/annurev.me.41.020190.001425

  • 6.

    Hodgson AB, Randell RK, Jeukendrup AE. The metabolic and performance effects of caffeine compared to coffee during endurance exercise. PLoS ONE. 2013;8(4):59561. PubMed ID: 23573201 doi:10.1371/journal.pone.0059561

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Davis JK, Green JM. Caffeine and anaerobic performance. Sports Med. 2009;39(10):813832. PubMed ID: 19757860 doi:10.2165/11317770-000000000-00000

  • 8.

    Spriet L. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44:175184. PubMed ID: 25355191 doi:10.1007/s40279-014-0257-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Pettersen SA, Krustrup P, Bendiksen M, et al. Caffeine supplementation does not affect match activities and fatigue resistance during match play in young football players. J Sports Sci. 2014;32(20):19581965. PubMed ID: 25357189 doi:10.1080/02640414.2014.965189

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Jordan JB, Korgaokar A, Farley RS, Coons JM, Caputo JL. Caffeine supplementation and reactive agility in elite youth soccer players. Pediatr Exerc Sci. 2014;26(2):168176. PubMed ID: 24277927 doi:10.1123/pes.2013-0134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gregson W, Drust B, Atkinson G, Salvo VD. Match-to-match variability of high-speed activities in premier league soccer. Int J Sports Med. 2010;31(4):237242. PubMed ID: 20157871 doi:10.1055/s-0030-1247546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Del Coso J, Ramírez JA, Muñoz G. Caffeine-containing energy drink improves physical performance of elite rugby players during a simulated match. Appl Physiol Nutr Metab. 2013;38(4):368374. PubMed ID: 23713528 doi:10.1139/apnm-2012-0339

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Foskett A, Ali A, Gant N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int J Sport Nutr Exerc Metab. 2009;19(4):410423. PubMed ID: 19827465 doi:10.1123/ijsnem.19.4.410

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ranchordas MK, King G, Russell M, Lynn A, Russell M. Effects of caffeinated gum on a battery of soccer-specific tests in trained university-standard male soccer players. Int J Sport Nutr Exerc Metab. 2018;27:16. PubMed ID: 29584462 doi:10.1123/ijsnem.2017-0405

    • Search Google Scholar
    • Export Citation
  • 15.

    Shohet KL, Landrum RE. Caffeine consumption questionnaire: a standardized measure for caffeine consumption in undergraduate students. Psychol Rep. 2001;89(3):521526. PubMed ID: 11824711 doi:10.2466/pr0.2001.89.3.521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Graham TE. Caffeine and exercise: metabolism, endurance and performance. Sports Med. 2001;31(11):785807. PubMed ID: 11583104 doi:10.2165/00007256-200131110-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Taylor KL, Cronin J, Gill ND, Chapman DW, Sheppard J. Sources of variability in iso-inertial jump assessments. Int J Sports Physiol Perform. 2010;5:546558. PubMed ID: 21266738 doi:10.1123/ijspp.5.4.546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Shalfawi SA, Sabbah A, Kailani G, Tønnessen E, Enoksen E. The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach. J Strength Cond Res. 2011;25(11):30883092. PubMed ID: 21993034 doi:10.1519/JSC.0b013e318212db0e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Chan CK, Lee J, Fond D, Yung PS, Chan KM. The difference of physical capabilities between youth soccer player and professional soccer player: an training implication. J Strength Cond Res. 2011;25(1):19. doi:10.1519/JSC.0b013e3181fc5a68

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Watanabe S. A widely applicable Bayesian information criterion. J Mach Learn Res. 2013;14:867897.

  • 22.

    Bürkner PC. brms: an R package for Bayesian multilevel models using Stan. J Stat Softw. 2017;80(1):128.

  • 23.

    Goldstein H. Multilevel Statistical Models. Chichester, UK: Wiley; 2011.

  • 24.

    Mengersen KL, Drovandi CC, Robert CP, Pyne DB, Gore CJ. Bayesian estimation of small effects in exercise and sports science. PLoS ONE, 2016;11(4):e0147311. PubMed ID: 27073897 doi:10.1371/journal.pone.0147311

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Morris RO, Edmonds S, Jones B, et al. Seasonal changes in physical qualities of elite youth soccer players according to maturity status: comparisons with aged matched controls. Sci Med Football. 2018;2:272280.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:313.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. J Strength Cond Res. 2010;24:257265. PubMed ID: 19924012 doi:10.1519/JSC.0b013e3181c1f88a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Abian-Vicen J, Puente C, Salinero JJ, et al. A caffeinated energy drink improves jump performance in adolescent basketball players. Amino Acids. 2014;46(5):13331341. PubMed ID: 24599611 doi:10.1007/s00726-014-1702-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 572 526 35
Full Text Views 38 36 2
PDF Downloads 17 16 1