Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $107.00

1 year subscription

USD $142.00

Student 2 year subscription

USD $203.00

2 year subscription

USD $265.00

Purpose: To provide a joint-level analysis of traditional (TS) and cluster (CS) set structure during the back-squat exercise. Methods: Eight men (24 [3] y, 177.3 [7.9] cm, 82.7 [11.0] kg, 11.9 [3.5] % body fat, and 150.3 [23.0] kg 1-repetition maximum [1RM]) performed the back-squat exercise (80%1RM) using TS (4 × 6, 2-min interset rest) and CS (4 × [2 × 3], 30-s intraset rest, 90-s interset rest), randomly. Lower-limb kinematics were collected by motion capture, as well as kinetic data by bilateral force platforms. Results: CS attenuated the loss in mean power (TS −21.6% [3.9%]; CS −12.4% [7.5%]; P = .042), although no differences in gross movement pattern (sagittal-plane joint angles) within and between conditions were observed (P ≥ .05). However, joint power produced at the hip increased from repetition (REP) 1 through REP 6 during TS, while a decrease was noted at the knee. A similar pattern was observed in the CS condition but was limited to the hip. Joint power produced at the hip increased from REP 1 through REP 3 but returned to REP 1 values before a similar increase through REP 6, resulting in differences between conditions (REP 4, P = .018; REP 5, P = .022). Conclusions: Sagittal-plane joint angles did not change in either condition, although CS elicited greater power. Differing joint power contributions (hip and knee) suggest potential central mechanism that may contribute to enhanced power output during CS and warrant further study. Practitioners should consider incorporating CS into training to promote greater power adaptations and to mitigate fatigue.

Stone, King, Mata, and Oliver are with the Dept of Kinesiology, the Sport Science Center at Texas Christian University, Texas Christian University, Fort Worth, TX. Goto, Hannon, Garrison, Bothwell, and Oliver are with Texas Health Sports Medicine, Fort Worth, TX. Jagim is with the Exercise and Performance Nutrition Laboratory, Dept of Exercise Science, Lindenwood University, St Charles, MO. Jones is with the Div of Health and Human Performance, Center for Sports Performance, George Mason University, Fairfax, VA.

Oliver (jonathan.oliver@tcu.edu) is corresponding author.
International Journal of Sports Physiology and Performance
Article Sections
References
  • 1.

    Ratamess NAAlvar BAEvetoch TK. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687708. doi:10.1249/MSS.0b013e3181915670

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Young WB. Transfer of strength and power training to sports performance. Int J Sports Physiol Perf. 2006;1(2):7483. doi:10.1123/ijspp.1.2.74

  • 3.

    Oliver JMKreutzer AJenke SPhillips MDMitchell JBJones MT. Acute response to cluster sets in trained and untrained men. Eur J Appl Physiol. 2015;115(11):23832393. PubMed ID: 26183257 doi:10.1007/s00421-015-3216-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Oliver JMKreutzer AJenke SCPhillips MDMitchell JBJones MT. Velocity drives greater power observed during back squat using cluster sets. J Strength Cond Res. 2016;30(1):235243. PubMed ID: 26121432 doi:10.1519/JSC.0000000000001023

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Tufano JJConlon JNimphius Set al. Cluster sets maintain velocity and power during high-volume back squats. Int J Sports Physiol Perf. 2016;11(7):885892. doi:10.1123/ijspp.2015-0602

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):4994. PubMed ID: 8295935 doi:10.1152/physrev.1994.74.1.49

  • 7.

    Hardee JPLawrence MMZwetsloot KATriplett NTUtter ACMcBride JM. Effect of cluster set configurations on power clean technique. J Sports Sci Med. 2013;31(5):488496. PubMed ID: 23121475 doi:10.1080/02640414.2012.736633

    • Search Google Scholar
    • Export Citation
  • 8.

    Hooper DRSzivak TKDiStefano LJet al. Effects of resistance training fatigue on joint biomechanics. J Strength Cond Res. 2013;27(1):146153. PubMed ID: 23254489 doi:10.1519/JSC.0b013e31825390da

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McLean SGSamorezov JE. Fatigue-induced ACL injury risk stems from a degradation in central control. Med Sci Sports Exerc. 2009;41(8):16621673. PubMed ID: 19568192 doi:10.1249/MSS.0b013e31819ca07b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Flanagan SSalem G. Lower extremity joint kinetic responses to external resistance variations. J Appl Biomech. 2008;24:5868. PubMed ID: 18309184 doi:10.1123/jab.24.1.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Hooper DRSzivak TKComstock BAet al. Effects of fatigue from resistance training on barbell back squat biomechanics. J Strength Cond Res. 2014;28(4):11271134. PubMed ID: 24662156 doi:10.1097/JSC.0000000000000237

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Rasmussen GHFSloth MEKristiansen MVVoigt M. Inter segmental coordination of competitive weightlifters during heavy back squatting. Paper presented at: 9th Annual Meeting of the Danish Society of Biomechanics; 2017; Aarhus, Denmark.

    • Export Citation
  • 13.

    Braidot ABrusa MLestussi FParera G. Biomechanics of front and back squat exercises. J Phys Conf Ser. 2017;90:012009.

  • 14.

    Fry ACSmith JCSchilling BK. Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res. 2003;17(4):629633. PubMed ID: 14636100

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    McBride JMBlow DKirby TJHaines TLDayne AMTriplett NT. Relationship between maximal squat strength and five, ten, and forty yard sprint times. J Strength Cond Res. 2009;23(6):16331636. PubMed ID: 19675504 doi:10.1519/JSC.0b013e3181b2b8aa

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Farris DJLichtwark GABrown NATCresswell AG. Deconstructing the power resistance relationship for squats: a joint-level analysis. Scand J Med Sci Sports. 2016;26(7):774781. PubMed ID: 26103786 doi:10.1111/sms.12508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Guigon EBaraduc PDesmurget M. Computational motor control: redundancy and invariance. J Neurophysiol. 2007;97(1):331347. PubMed ID: 17005621 doi:10.1152/jn.00290.2006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Côté JNMathieu PALevin MFFeldman AG. Movement reorganization to compensate for fatigue during sawing. Exp Brain Res. 2002;146(3):394398. PubMed ID: 12232697 doi:10.1007/s00221-002-1186-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Côté JNRaymond DMathieu PAFeldman AGLevin MF. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals. Clin Biomech. 2005;20(6):581590. PubMed ID: 15927734 doi:10.1016/j.clinbiomech.2005.02.012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Cowley JCGates DH. Inter-joint coordination changes during and after muscle fatigue. Hum Mov Sci. 2017;56:109118. PubMed ID: 29121490 doi:10.1016/j.humov.2017.10.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McDonald ACCalvin TKeir PJ. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: recovery. J Electromyogr Kinesiol. 2016;29:4249. PubMed ID: 26076931 doi:10.1016/j.jelekin.2015.05.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Oliver JMJagim ARSanchez ACet al. Greater gains in strength and power with intraset rest intervals in hypertrophic training. J Strength Cond Res. 2013;27(11):31163131. PubMed ID: 23736782 doi:10.1519/JSC.0b013e3182891672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jackson ASPollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40(3):497504. PubMed ID: 718832 doi:10.1079/BJN19780152

  • 24.

    Robertson GCaldwell GHamill JKamen GWhittlesey S. Research Methods in Biomechanics. 2nd ed. Champaign, IL: Human Kinetics; 2013.

    • Search Google Scholar
    • Export Citation
  • 25.

    Cormie PMcBride JMMcCaulley GO. Validation of power measurement techniques in dynamic lower body resistance exercises. J Appl Biomech. 2007;23(2):103118. PubMed ID: 17603130 doi:10.1123/jab.23.2.103

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Curran-Everett D. Multiple comparisons: philosophies and illustrations. Am J Physiol Regul Integr Comp Physiol. 2000;279(1):18. PubMed ID: 10896857 doi:10.1152/ajpregu.2000.279.1.R1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Rhea MR. Determining the magnitude of treatment effects in strength training research through the use of the effect size. J Strength Cond Res. 2004;18:918920. PubMed ID: 15574101

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Joy JMOliver JMLowery RPMcCleary SAWilson JM. Power output and EMG activity of the back squat exercise with cluster sets. J Sports Sci. 2013;1:3745.

    • Search Google Scholar
    • Export Citation
  • 29.

    Taylor JLTodd GGandevia SC. Evidence for a supraspinal contribution to human muscle fatigue. Clin Exp Pharmacol Physiol. 2006;33(4):400405. PubMed ID: 16620309 doi:10.1111/j.1440-1681.2006.04363.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 199 199 34
Full Text Views 5 5 1
PDF Downloads 3 3 2
Altmetric Badge
PubMed
Google Scholar