Impaired Heat Adaptation From Combined Heat Training and “Live High, Train Low” Hypoxia

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Erin L. McCleave
Search for other papers by Erin L. McCleave in
Current site
Google Scholar
PubMed
Close
,
Katie M. Slattery
Search for other papers by Katie M. Slattery in
Current site
Google Scholar
PubMed
Close
,
Rob Duffield
Search for other papers by Rob Duffield in
Current site
Google Scholar
PubMed
Close
,
Philo U. Saunders
Search for other papers by Philo U. Saunders in
Current site
Google Scholar
PubMed
Close
,
Avish P. Sharma
Search for other papers by Avish P. Sharma in
Current site
Google Scholar
PubMed
Close
,
Stephen Crowcroft
Search for other papers by Stephen Crowcroft in
Current site
Google Scholar
PubMed
Close
, and
Aaron J. Coutts
Search for other papers by Aaron J. Coutts in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: To determine whether combining training in heat with “Live High, Train Low” hypoxia (LHTL) further improves thermoregulatory and cardiovascular responses to a heat-tolerance test compared with independent heat training. Methods: A total of 25 trained runners (peak oxygen uptake = 64.1 [8.0] mL·min−1·kg−1) completed 3-wk training in 1 of 3 conditions: (1) heat training combined with “LHTL” hypoxia (H+H; FiO2 = 14.4% [3000 m], 13 h·d−1; train at <600 m, 33°C, 55% relative humidity [RH]), (2) heat training (HOT; live and train <600 m, 33°C, 55% RH), and (3) temperate training (CONT; live and train <600 m, 13°C, 55% RH). Heat adaptations were determined from a 45-min heat-response test (33°C, 55% RH, 65% velocity corresponding to the peak oxygen uptake) at baseline and immediately and 1 and 3 wk postexposure (baseline, post, 1 wkP, and 3 wkP, respectively). Core temperature, heart rate, sweat rate, sodium concentration, plasma volume, and perceptual responses were analyzed using magnitude-based inferences. Results: Submaximal heart rate (effect size [ES] = −0.60 [−0.89; −0.32]) and core temperature (ES = −0.55 [−0.99; −0.10]) were reduced in HOT until 1 wkP. Sweat rate (ES = 0.36 [0.12; 0.59]) and sweat sodium concentration (ES = −0.82 [−1.48; −0.16]) were, respectively, increased and decreased until 3 wkP in HOT. Submaximal heart rate (ES = −0.38 [−0.85; 0.08]) was likely reduced in H+H at 3 wkP, whereas CONT had unclear physiological changes. Perceived exertion and thermal sensation were reduced across all groups. Conclusions: Despite greater physiological stress from combined heat training and “LHTL” hypoxia, thermoregulatory adaptations are limited in comparison with independent heat training. The combined stimuli provide no additional physiological benefit during exercise in hot environments.

McCleave, Slattery, Duffield, Crowcroft, and Coutts are with the Sport and Exercise Science Discipline Group, Faculty of Health, University of Technology Sydney (UTS), Moore Park, NSW, Australia. Slattery and Crowcroft are with the New South Wales Inst of Sport, Sydney Olympic Park, Sydney, NSW, Australia. Saunders and Sharma are with the Dept of Physiology, Australian Inst of Sport (AIS), Canberra, ACT, Australia. Saunders and Sharma are with the University of Canberra Research Inst for Sport and Exercise (UCRISE), Canberra, ACT, Australia. McCleave is with Rowing Australia, Canberra, ACT, Australia.

McCleave (emccleave@rowingaustralia.com.au) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Wehrlin JP, Hallén J. Linear decrease in VO2max and performance with increasing altitude in endurance athletes. Eur J Appl Physiol. 2006;96(4):404412. PubMed ID: 16311764 doi:10.1007/s00421-005-0081-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Rendell RA, Prout J, Costello JT, et al. Effects of 10 days of separate heat and hypoxic exposure on heat acclimation and temperate exercise performance. Am J Physiol Regul Integr Comp Physiol. 2017;313(3):191201. PubMed ID: 28592459 doi:10.1152/ajpregu.00103.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Tyler CJ, Reeve T, Hodges GJ, Cheung SS. The effects of heat adaptation on physiology, perception and exercise performance in the heat: a meta-analysis. Sports Med. 2016;46(11):16991724. PubMed ID: 27106556 doi:10.1007/s40279-016-0538-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Levine BD, Stray-Gundersen J. “Living high-training low”: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol. 1997;83(1):102112. PubMed ID: 9216951 doi:10.1152/jappl.1997.83.1.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Daanen HAM, Racinais S, Périard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409430. PubMed ID: 29129022 doi:10.1007/s40279-017-0808-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chapman RF, Laymon Stickford AS, Lundby C, Levine BD. Timing of return from altitude training for optimal sea level performance. J Appl Physiol. 2014;116(7):837843. PubMed ID: 24336885 doi:10.1152/japplphysiol.00663.2013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Ely BR, Lovering AT, Horowitz M, Minson CT. Heat acclimation and cross tolerance to hypoxia: bridging the gap between cellular and systemic responses. Temperature. 2014;1(2):107114. PubMed ID: 27583292 doi:10.4161/temp.29800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Buchheit M, Racinais S, Bilsborough J, et al. Adding heat to the live-high train-low altitude model: a practical insight from professional football. Br J Sports Med. 2013;47(suppl 1):i59i69. PubMed ID: 24282209 doi:10.1136/bjsports-2013-092559

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Brugniaux JV, Schmitt L, Robach P, et al. Eighteen days of “living high, training low” stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners. J Appl Physiol. 2006;100(1):203211. PubMed ID: 16179396 doi:10.1152/japplphysiol.00808.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Gore CJ, Hahn AG, Aughey RJ, et al. Live high:train low increases muscle buffer capacity and submaximal cycling efficiency. Acta Physiol Scand. 2001;173(3):275286. PubMed ID: 11736690 doi:10.1046/j.1365-201X.2001.00906.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Périard JD, Ruell P, Caillaud C, Thompson MW. Plasma Hsp72 (HSPA1A) and Hsp27 (HSPB1) expression under heat stress: influence of exercise intensity. Cell Stress Chaperones. 2012;17(3):375383. PubMed ID: 22222935 doi:10.1007/s12192-011-0313-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Sandström ME, Siegler JC, Lovell RJ, Madden LA, McNaughton L. The effect of 15 consecutive days of heat-exercise acclimation on heat shock protein 70. Cell Stress Chaperones. 2008;13(2):169175. PubMed ID: 18759002 doi:10.1007/s12192-008-0022-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Sawka MN, Concertino VA, Eichner ER, Schnieder SM, Young AJ. Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc. 2000;32(2):332348. PubMed ID: 10694114 doi:10.1097/00005768-200002000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McCleave EL, Slattery KM, Duffield R, et al. Temperate performance benefits after heat, but not combined heat and hypoxic training. Med Sci Sports Exerc. 2017;49(3):509517. PubMed ID: 27787334 doi:10.1249/MSS.0000000000001138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Kuwahara T, Inoue Y, Abe M, Sato Y, Kondo N. Effects of menstrual cycle and physical training on heat loss responses during dynamic exercise at moderate intensity in a temperate environment. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1347R1353. PubMed ID: 15677525 doi:10.1152/ajpregu.00547.2004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Racinais S, Mohr M, Buchheit M, et al. Individual responses to short-term heat acclimatisation as predictors of football performance in a hot, dry environment. Br J Sports Med. 2012;46(11):810815. PubMed ID: 22797527 doi:10.1136/bjsports-2012-091227

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377390. PubMed ID: 17277604 doi:10.1249/mss.0b013e31802ca597

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Ramanathan NL. A new weighting system for mean surface temperature of the human body. J Appl Physiol. 1964;19:531533. PubMed ID: 14173555 doi:10.1152/jappl.1964.19.3.531

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gagge AP, Stolwijk JA, Saltin B. Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures. Environ Res. 1969;2(3):209229. PubMed ID: 5788908 doi:10.1016/0013-9351(69)90037-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Borg GAV. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377381. PubMed ID: 7154893 doi:10.1249/00005768-198205000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kargotich S, Goodman C, Keast D, Morton AR. The influence of exercise-induced plasma volume changes on the interpretation of biochemical parameters used for monitoring exercise, training and sport. Sports Med. 1998;26(2):101117. PubMed ID: 9777683 doi:10.2165/00007256-199826020-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Schmidt W, Prommer N. The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol. 2005;95(5–6):486495. PubMed ID: 16222540 doi:10.1007/s00421-005-0050-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Batterham AM, Hopkins WG. Making meaningful inferences about magnitudes. Int J Sports Physiol Perform. 2006;1(1):5057. PubMed ID: 19114737 doi:10.1123/ijspp.1.1.50

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 26.

    Minson CT. Hypoxic regulation of blood flow in humans. In: Roach RC, Wagner PD, Hackett PH, eds. Hypoxia: Through the Lifecycle. Boston, MA: Springer US; 2003:249262.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Brandenberger G, Candas V, Follenius M, Libert JP, Kahn JM. Vascular fluid shifts and endocrine responses to exercise in the heat. Europ J Appl Physiol Occup Physiol. 1986;55(2):123129. PubMed ID: 3516680 doi:10.1007/BF00714993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Milledge JS, Catley DM, Ward MP, Williams ES, Clarke CR. Renin-aldosterone and angiotensin-converting enzyme during prolonged altitude exposure. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(3):699702. PubMed ID: 6313562 doi:10.1152/jappl.1983.55.3.699

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    de Magalhães FC, Amorim FT, Passos RLF, et al. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans. Cell Stress Chaperones. 2010;15(6):885895. PubMed ID: 20414820 doi:10.1007/s12192-010-0197-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Gibson OR, Dennis A, Parfitt T, Taylor L, Watt PW, Maxwell NS. Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure. Cell Stress Chaperones. 2014;19(3):389400. PubMed ID: 24085588 doi:10.1007/s12192-013-0468-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Barnett A, Maughan RJ. Response of unacclimatized males to repeated weekly bouts of exercise in the heat. Br J Sports Med. 1993;27(1):3944. PubMed ID: 8457812 doi:10.1136/bjsm.27.1.39

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Le Meur Y, Hausswirth C, Natta F, Couturier A, Bignet F, Vidal PP. A multidisciplinary approach to overreaching detection in endurance trained athletes. J Appl Physiol. 2013;114(3):411420. PubMed ID: 23195630 doi:10.1152/japplphysiol.01254.2012

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Sinex JA, Chapman RF. Hypoxic training methods for improving endurance exercise performance. J Sport Health Sci. 2015;4(4):325332. doi:10.1016/j.jshs.2015.07.005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Garvican LA, Saunders PU, Cardoso T, et al. Intravenous iron supplementation in distance runners with low or suboptimal ferritin. Med Sci Sports Exerc. 2014;46(2):376385. PubMed ID: 23872938 doi:10.1249/MSS.0b013e3182a53594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3678 1213 18
Full Text Views 90 10 0
PDF Downloads 102 13 0