Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: Inconsistent results among studies examining the effects of caffeine on exercise performance are potentially due to interindividual variability in biological responses to caffeine ingestion. The aims, therefore, of the present study were to identify high and low caffeine responders and compare the influence of caffeine on exercise performance and biological responses between groups during a simulated soccer-game protocol on treadmill. Methods: Well-trained soccer players were distinguished as high (n = 11) and low (n = 9) caffeine responders based on resting blood pressure, plasma glycerol, nonesterified fatty acid, and epinephrine responses to caffeine. Participants underwent 2 simulated soccer-game protocols on a treadmill after caffeine (6 mg·kg−1) or placebo ingestion. Exercise performance and several biological responses were evaluated. Results: Exercise performance did not differ between the high and low responders to caffeine (P > .05). However, time to fatigue (high, caffeine: 797 [201] s vs placebo: 487 [258] s; low, caffeine: 625 [357] s vs placebo 447 [198] s) and countermovement jump (high, caffeine: 42.1 [5.5] cm vs placebo: 40.5 [5.7] cm; low, caffeine: 41.0 [3.8] cm vs placebo: 38.8 [4.6] cm) improved with caffeine relative to placebo (P < .001). Rating of perceived exertion was lower (P < .001) in high (13.4 [2.3]) than in low responders (14.3 [2.4]) with caffeine ingestion. Conclusions: Caffeine improved aerobic endurance and neuromuscular performance in well-trained soccer players regardless of their responsiveness to caffeine at rest. Since no changes in substrate utilization were found with caffeine supplementation, performance improvements could be attributed to positive effects on the central nervous system and/or neuromuscular function, although the precise mechanism remains unclear.

Apostolidis and Hadjicharalambous are with the Human Performance Laboratory, and Rodosthenous, the Pharmacy Program, Dept of Life & Health Sciences, University of Nicosia, Nicosia, Cyprus. Mougios is with the Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sports Science, Aristotle University of Thessaloniki, Thessaloniki, Greece. Smilios is with the School of Physical Education & Sports Science, Democritus University of Thrace, Komotini, Greece.

Hadjicharalambous (hadjicharalambous.m@unic.ac.cy) is corresponding author.
  • 1.

    Del Coso JD, Munoz G, Munoz-Guerra J. Prevalence of caffeine use in elite athletes following its removal from the World Anti-Doping Agency list of banned substances. Appl Physiol Nutr Metab. 2011;36:555–561. PubMed ID: 21854160 doi:10.1139/h11-052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Guest N, Corey P, Vescovi J, El-Sohemy A. Caffeine, CYP1A2 genotype and endurance performance in athletes. Med Sci Sports Exerc. 2018;50(8):1570–1578. PubMed ID: 29509641 doi:10.1249/MSS.0000000000001596

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Spriet LL. Exercise and sport performance with low doses of caffeine. Sports Med. 2014;44:175–184. PubMed ID: 25355191 doi:10.1007/s40279-014-0257-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Cox GR, Desbrow B, Montgomery PG, et al. Effect of different protocols of caffeine intake on metabolism and performance. J Appl Physiol. 2002;93:990–999. PubMed ID: 12183495 doi:10.1152/japplphysiol.00249.2002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Van Soeren MH, Graham TE. Effect of caffeine on metabolism, exercise endurance, and catecholamine responses after withdrawal. J Appl Physiol. 1998;85:1493–1501. PubMed ID: 9760346 doi:10.1152/jappl.1998.85.4.1493

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Spriet LL, MacLean DA, Dyck DJ, Hultman E, Cederblad G, Graham TE. Caffeine ingestion and muscle metabolism during prolonged exercise in humans. Am J Physiol. 1992;262:891–898. PubMed ID: 1616022 doi:10.1152/ajpcell.1992.262.4.C891

    • Search Google Scholar
    • Export Citation
  • 7.

    Graham TE, Battram DS, Dela F, EI-Sohemy A, Thong FS. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl Physiol Nutr Metab. 2008;33:1311–1318. PubMed ID: 19088793 doi:10.1139/H08-129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hadjicharalambous M, Georgiades E, Kilduff LP, Turner AP, Tsofliou F, Pitsiladis YP. Influence of caffeine on perception of effort, metabolism and exercise performance following a high-fat meal. J Sports Sci. 2006;24:875–887. PubMed ID: 16815783 doi:10.1080/02640410500249399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hadjicharalambous MP, Kilduff LP, Pitsiladis YP. Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans. J Int Soc Sports Nutr. 2010;7:22. PubMed ID: 20507554 doi:10.1186/1550-2783-7-22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Del Coso J, Muñoz-Fernández VE, Muñoz G, et al. Effects of a caffeine-containing energy drink on simulated soccer performance. PLoS ONE. 2012;7:e31380. PubMed ID: 22348079 doi:10.1371/journal.pone.0031380

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Wardle MC, Treadway MT, de Wit H. Caffeine increases psychomotor performance on the effort expenditure for rewards task. Pharmacol Biochem Behav. 2012;102:526–531. PubMed ID: 22750066 doi:10.1016/j.pbb.2012.06.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Salvagio A, Periti M, Miano L, Zambelli C. Association between habitual coffee consumption and blood pressure. J Hypertens. 1998;8:585–590. PubMed ID: 2165094 doi:10.1097/00004872-199006000-00013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player. J Sports Sci. 2006;24:665–674. PubMed ID: 16766496 doi:10.1080/02640410500482529

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Willett WC, Sampson L, Stampfer MJ, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol. 1985;122:51–65. PubMed ID: 4014201 doi:10.1093/oxfordjournals.aje.a114086

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Jackson AS, Pollock ML. Generalized equations for predicting body density of men. Br J Nutr. 1978;40:497–504. PubMed ID: 718832 doi:10.1079/BJN19780152

  • 16.

    Siri WE. Body composition from fluids spaces and density: analysis of methods. In: Brozek J, Henschel A, eds. Techniques for Measuring Body Composition. Washington, DC: National Academy of Sciences, National Research Counsil; 1961:223–244.

    • Search Google Scholar
    • Export Citation
  • 17.

    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14:377–381. PubMed ID: 7154893

  • 18.

    McArdle WD, Katch FI, Katch VL. Vitamins, minerals and water. In: Frank I, Katch FI, Victor L, Katch VL, eds. Exercise Physiology: Energy, Nutrition and Human Performance. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2007:42–78.

    • Search Google Scholar
    • Export Citation
  • 19.

    Forster V, Dempsey J, Thomson J, Vidruk R, DoPico G. Estimation of arterial PO2, PCO2, pH, and lactate from arterialized venous blood. J Appl Physiol. 1972;32:134–137. PubMed ID: 5007005 doi:10.1152/jappl.1972.32.1.134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Owoeye OA, Akinbo SA, Tella BA, Olawale OA. Efficacy of the FIFA 11+ warm-up programme in male youth football: a cluster randomized controlled trial. J Sports Sci Med. 2014;13:321–328. PubMed ID: 24790486

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Drust B, Reilly T, Cable NT. Physiological responses to laboratory-based soccer-specific intermittent and continues exercise. J Sports Sci. 2000;18:885–892. PubMed ID: 11144865 doi:10.1080/026404100750017814

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Lamarra N, Whipp B, Ward S, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62:2003–2012. PubMed ID: 3110126 doi:10.1152/jappl.1987.62.5.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ravussin E, Schutz Y, Acheson K, Dusmet M, Bourquin L, Jequier E. Short-term, mixed-diet overfeeding in man: no evidence of “luxuskonsumption”. Am J Physiol. 1985;249:E470–E477. PubMed ID: 4061637 doi:10.1152/ajpendo.1985.249.5.E470

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Alkahtani S. Comparing fat oxidation in an exercise test with moderate-intensity interval training. J Sports Sci Med. 2014;13:51–58. PubMed ID: 24570605

    • Search Google Scholar
    • Export Citation
  • 25.

    Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports. 2005;15:69–78. PubMed ID: 15773860 doi:10.1111/j.1600-0838.2005.00445.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lara B, Gonzalez-Millán C, Salinero JJ, et al. Caffeine-containing energy drink improves physical performance in female soccer players. Amino Acids. 2014;46:1385–1392. PubMed ID: 24615239 doi:10.1007/s00726-014-1709-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Behrens M, Mau-Moeller A, Weippert M, et al. Caffeine-induced increase in voluntary activation and strength of quadriceps muscle during isometric, concentric and eccentric contraction. Sci Rep. 2015;5:10209. PubMed ID: 25969895 doi:10.1038/srep10209

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tallis J, James RS, Cox VM, Duncan MJ. The effect of physiological concentrations of caffeine on the power output of maximally and submaximally stimulated mouse EDL (fast) and soleus (slow) muscle. J Appl Physiol. 2012;112:64–71. PubMed ID: 21979804 doi:10.1152/japplphysiol.00801.2011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ali A, O’Donnell J, Foskett A, Rutherfurd-Markwick K. The influence of caffeine ingestion on strength and power performance in female team-sport players. J Int Soc Sports. 2016;13:46. PubMed ID: 27980499 doi:10.1186/s12970-016-0157-4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Mohr M, Nielsen JJ, Bangsbo J. Caffeine intake improves intense intermittent exercise performance and reduces muscle interstitial potassium accumulation. J Appl Physiol. 2011;111:1372–1379. PubMed ID: 21836046 doi:10.1152/japplphysiol.01028.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Santos VG, Santos VR, Felippe LJ, et al. Caffeine reduces reaction time and improves performance in simulated-contest of taekwondo. Nutrients. 2014;6:637–649. PubMed ID: 24518826 doi:10.3390/nu6020637

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McLellan TM, Caldwell JA, Lieberman HR. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev. 2016;71:294–312. PubMed ID: 27612937 doi:10.1016/j.neubiorev.2016.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci. 2008;9:58–65. PubMed ID: 18094706 doi:10.1038/nrn2298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 845 845 97
Full Text Views 35 35 0
PDF Downloads 20 20 0