Physiologic, Metabolic, and Nutritional Attributes of Collegiate Synchronized Swimmers

in International Journal of Sports Physiology and Performance

Click name to view affiliation

Paula B. Costa
Search for other papers by Paula B. Costa in
Current site
Google Scholar
PubMed
Close
,
Scott R. Richmond
Search for other papers by Scott R. Richmond in
Current site
Google Scholar
PubMed
Close
,
Charles R. Smith
Search for other papers by Charles R. Smith in
Current site
Google Scholar
PubMed
Close
,
Brad Currier
Search for other papers by Brad Currier in
Current site
Google Scholar
PubMed
Close
,
Richard A. Stecker
Search for other papers by Richard A. Stecker in
Current site
Google Scholar
PubMed
Close
,
Brad T. Gieske
Search for other papers by Brad T. Gieske in
Current site
Google Scholar
PubMed
Close
,
Kimi Kemp
Search for other papers by Kimi Kemp in
Current site
Google Scholar
PubMed
Close
,
Kyle E. Witherbee
Search for other papers by Kyle E. Witherbee in
Current site
Google Scholar
PubMed
Close
, and
Chad M. Kerksick
Search for other papers by Chad M. Kerksick in
Current site
Google Scholar
PubMed
Close
Restricted access

Synchronized swimming is a sport that requires high levels of strength, power, and endurance, as well as artistic skill to perform in an aquatic environment. Purpose: The purpose of this study was to identify physiological characteristics and dietary habits of collegiate synchronized swimmers. Methods: A total of 21 female participants (mean [SD] age = 20.4 [1.6] y, height = 168.0 [4.9] cm, and weight = 64.4 [8.7] kg) performed resting metabolic rate test. Body composition was determined using skinfolds (4-site and 7-site) and dual-energy X-ray absorptiometry (DEXA). Dietary intake was assessed using 4-d dietary records. Results: Resting metabolic rate was 110.9 (10.5) kJ/kg normalized to body weight and calculated relative daily caloric intake was 121.4 (42.3) kJ/kg. Estimated energy availability ranged from 109.1 (52.1) to 126.7 (52.6) kJ/kg fat-free mass per day and was correlated (P = .045) to resting metabolic rate. Percentage body fat measured using DEXA (28.7% [4.8%] fat) was higher than both 4-site (25.7% [4.8%] fat, P = .001) and 7-site (25.3% [4.7%] fat, P = .001) skinfold values. No significant correlations were reported between bone mineral density, body composition, and dietary intake data. Conclusions: Synchronized swimmers have similar body composition and training habits as other competitive aquatic athletes. Dietary intake data revealed low energy availability and lower than recommended macronutrient levels.

The authors are with the Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St Charles, MO.

Kerksick (ckerksick@lindenwood.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Mountjoy M. Injuries and medical issues in synchronized Olympic sports. Curr Sports Med Rep. 2009;8(5):255261. PubMed ID: 19741353 doi:10.1249/JSR.0b013e3181b84a09

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Schaal K, Le Meur Y, Bieuzen F, et al. Effect of recovery mode on postexercise vagal reactivation in elite synchronized swimmers. Appl Physiol Nutr Metab. 2013;38(2):126133. PubMed ID: 23438222 doi:10.1139/apnm-2012-0155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Loucks AB, Kiens B, Wright HH. Energy availability in athletes. J Sports Sci. 2011;29(suppl 1):715. doi:10.1080/02640414.2011.588958

  • 4.

    Lundy B. Nutrition for synchronized swimming: a review. Int J Sport Nutr Exerc Metab. 2011;21(5):436445. PubMed ID: 21904005 doi:10.1123/ijsnem.21.5.436

  • 5.

    Robertson S, Benardot D, Mountjoy M. Nutritional recommendations for synchronized swimming. Int J Sport Nutr Exerc Metab. 2014;24(4):404413. PubMed ID: 24667278 doi:10.1123/ijsnem.2014-0013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    De Souza MJ, Hontscharuk R, Olmsted M, Kerr G, Williams NI. Drive for thinness score is a proxy indicator of energy deficiency in exercising women. Appetite. 2007;48(3):359367. PubMed ID: 17184880 doi:10.1016/j.appet.2006.10.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    De Souza MJ, West SL, Jamal SA, Hawker GA, Gundberg CM, Williams NI. The presence of both an energy deficiency and estrogen deficiency exacerbate alterations of bone metabolism in exercising women. Bone. 2008;43(1):140148. PubMed ID: 18486582 doi:10.1016/j.bone.2008.03.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Gibbs JC, Williams NI, Scheid JL, Toombs RJ, De Souza MJ. The association of a high drive for thinness with energy deficiency and severe menstrual disturbances: confirmation in a large population of exercising women. Int J Sport Nutr Exerc Metab. 2011;21(4):280290. PubMed ID: 21813911 doi:10.1123/ijsnem.21.4.280

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Scheid JL, Williams NI, West SL, VanHeest JL, De Souza MJ. Elevated PYY is associated with energy deficiency and indices of subclinical disordered eating in exercising women with hypothalamic amenorrhea. Appetite. 2009;52(1):184192. PubMed ID: 18929607 doi:10.1016/j.appet.2008.09.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Ebine N, Feng JY, Homma M, Saitoh S, Jones PJ. Total energy expenditure of elite synchronized swimmers measured by the doubly labeled water method. Eur J Appl Physiol. 2000;83(1):16. PubMed ID: 11072766 doi:10.1007/s004210000253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Yamamura C, Zushi S, Takata K, Ishiko T, Matsui N, Kitagawa K. Physiological characteristics of well-trained synchronized swimmers in relation to performance scores. Int J Sports Med. 1999;20(4):246251. PubMed ID: 10376481 doi:10.1055/s-2007-971125

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Nana A, Slater GJ, Stewart AD, Burke LM. Methodology review: using Dual-Energy X-Ray Absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int J Sport Nutr Exerc Metab. 2015;25(2):198215. PubMed ID: 25029265 doi:10.1123/ijsnem.2013-0228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Thompson WR, Gordon NF, Pescatello LS. ACSM’s Guidelines for Exercise Testing and Prescription. Philadelphia, PA: Lippincott Williams & Wilkins; 2010.

    • Search Google Scholar
    • Export Citation
  • 14.

    Siri WE. Body composition from fluid spaces and density: analysis of methods. 1961. Nutrition. 1993;9(5):480491. PubMed ID: 8286893

  • 15.

    Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:113140. PubMed ID: 14062375 doi:10.1111/j.1749-6632.1963.tb17079.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Basiotis PP, Welsh SO, Cronin FJ, Kelsay JL, Mertz W. Number of days of food intake records required to estimate individual and group nutrient intakes with defined confidence. J Nutr. 1987;117(9):16381641. PubMed ID: 3655942 doi:10.1093/jn/117.9.1638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39(suppl 1):541. PubMed ID: 4044297

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Harris JA, Benedict FG. A Biometric Study of Basal Metabolism in Men. Publication No. 279. Washington, DC: Carnegie Institute of Washington; 1919.

    • Search Google Scholar
    • Export Citation
  • 19.

    Cunningham JJ. Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am J Clin Nutr. 1991;54(6):963969. PubMed ID: 1957828 doi:10.1093/ajcn/54.6.963

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Mifflin MD, St Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO. A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr. 1990;51(2):241247. PubMed ID: 2305711 doi:10.1093/ajcn/51.2.241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ainsworth BE, Haskell WL, Whitt MC, et al. Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000;32(suppl 9):S498S516. PubMed ID: 10993420 doi:10.1097/00005768-200009001-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Centers for Disease Control. Bone Density Norms—Proximal Femur and Lumbar Spine. Atlanta, GA: Author; 2008.

  • 23.

    Burke LM. Energy needs of athletes. Can J Appl Physiol. 2001;26(suppl):S202S219. doi:10.1139/h2001-055

  • 24.

    Kerksick CM, Kulovitz MG. Requirements of protein, carbohydrates and fats for athletes. In: Bagchi D, Nair S, & Sen CK, eds. Nutrition and Enhanced Sports Performance: Recommendations for Muscle Building. London, UK: Elsevier; 2013.

    • Search Google Scholar
    • Export Citation
  • 25.

    Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(suppl 1):S17S27. doi:10.1080/02640414.2011.585473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Alaunyte I, Stojceska V, Plunkett A. Iron and the female athlete: a review of dietary treatment methods for improving iron status and exercise performance. J Int Soc Sports Nutr. 2015;12:38. PubMed ID: 26448737 doi:10.1186/s12970-015-0099-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mountjoy M, Sundgot-Borgen J, Burke L, et al. The IOC consensus statement: beyond the female athlete triad—Relative Energy Deficiency in Sport (RED-S). Br J Sports Med. 2014;48(7):491497. PubMed ID: 24620037 doi:10.1136/bjsports-2014-093502

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Jeacocke NA, Burke LM. Methods to standardize dietary intake before performance testing. Int J Sport Nutr Exerc Metab. 2010;20(2):87103. PubMed ID: 20479482 doi:10.1123/ijsnem.20.2.87

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Scagliusi FB, Ferriolli E, Pfrimer K, et al. Underreporting of energy intake in Brazilian women varies according to dietary assessment: a cross-sectional study using doubly labeled water. J Am Diet Assoc. 2008;108(12):20312040. PubMed ID: 19027406 doi:10.1016/j.jada.2008.09.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Sjodin AM, Forslund AH, Westerterp KR, Andersson AB, Forslund JM, Hambraeus LM. The influence of physical activity on BMR. Med Sci Sports Exerc. 1996;28(1):8591. PubMed ID: 8775359 doi:10.1097/00005768-199601000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3868 1099 61
Full Text Views 69 17 7
PDF Downloads 75 22 8