The Influence of Hamstring Muscle Peak Torque and Rate of Torque Development for Sprinting Performance in Football Players: A Cross-Sectional Study

in International Journal of Sports Physiology and Performance
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

Purpose: To investigate the association between hamstring muscle peak torque and rapid force capacity (rate of torque development, RTD) vs sprint performance in elite youth football players. Methods: Thirty elite academy youth football players (16.75 [1.1] y, 176.9 [6.7] cm, 67.1 [6.9] kg) were included. Isometric peak torque (in Newton meters per kilogram) and early- (0–100 ms) and late- (0–200 ms) phase RTD (RTD100, RTD200) (in Newton meters per second per kilogram) of the hamstring muscles were obtained as independent predictor variables. Sprint performance was assessed during a 30-m-sprint trial. Mechanical sprint variables (maximal horizontal force production [FH0, in Newtons per kilogram], maximal theoretical velocity [V0, in meters per second], maximal horizontal power output [Pmax, in watts per kilogram]) and sprint split times (0–5, 0–15, 0–30, and 15–30 m, in seconds) were derived as dependent variables. Subsequently, linear-regression analysis was conducted for each pair of dependent and independent variables. Results: Positive associations were observed between hamstring RTD100 and FH0 (r2 = .241, P = .006) and Pmax (r2 = .227, P = .008). Furthermore, negative associations were observed between hamstring RTD100 and 0- to 5-m (r2 = .206, P = .012), 0- to 15-m (r2 = .217, P = .009), and 0- to 30-m sprint time (r2 = .169, P = .024). No other associations were observed. Conclusions: The present data indicate that early-phase (0–100 ms) rapid force capacity of the hamstring muscles plays an important role for acceleration capacity in elite youth football players. In contrast, no associations were observed between hamstring muscle function and maximal sprint velocity. This indicates that strength training focusing on improving early-phase hamstring rate of force development may contribute to enhance sprint acceleration performance in this athlete population.

Ishøi, Nielsen, Krommes, Hölmich, and Thorborg are with the Dept of Orthopedic Surgery, Sports Orthopedic Research Center-Copenhagen (SORC-C), and Thorborg, also the Dept of Orthopedic Surgery and Physical Therapy, Physical Medicine & Rehabilitation Research-Copenhagen (PMR-C), Copenhagen University Hospital, Amager-Hvidovre, Hvidovre, Denmark. Aagaard is with the Dept of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark. Thornton is with the Dept of Physiotherapy, FC Nordsjælland A/S—part of the Right to Dream Group, Farum, Denmark.

Ishøi (lasse.ishoei@regionh.dk) is corresponding author.
  • 1.

    Haugen TA, Tonnessen E, Seiler S. Anaerobic performance testing of professional soccer players 1995–2010. Int J Sports Physiol Perform. 2013;8(2):148–156. PubMed ID: 22868347 doi:10.1123/ijspp.8.2.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barnes C, Archer DT, Hogg B, Bush M, Bradley PS. The evolution of physical and technical performance parameters in the English Premier League. Int J Sports Med. 2014;35(13):1095–1100. PubMed ID: 25009969 doi:10.1055/s-0034-1375695

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Faude O, Koch T, Meyer T. Straight sprinting is the most frequent action in goal situations in professional football. J Sports Sci. 2012;30(7):625–631. PubMed ID: 22394328 doi:10.1080/02640414.2012.665940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21(1):31–43. PubMed ID: 16131703 doi:10.1123/jab.21.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Charalambous L, Irwin G, Bezodis IN, Kerwin D. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off. J Sports Sci. 2012;30(1):1–9. PubMed ID: 22098532 doi:10.1080/02640414.2011.616948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Newman MA, Tarpenning KM, Marino FE. Relationships between isokinetic knee strength, single-sprint performance, and repeated-sprint ability in football players. J Strength Cond Res. 2004;18(4):867–872. PubMed ID: 15574095

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Wisloff U, Castagna C, Helgerud J, Jones R, Hoff J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br J Sports Med. 2004;38(3):285–288. PubMed ID: 15155427 doi:10.1136/bjsm.2002.002071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Morin JB, Gimenez P, Edouard P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Front Physiol. 2015;6:404. PubMed ID: 26733889 doi:10.3389/fphys.2015.00404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ishøi L, Hölmich P, Aagaard P, Thorborg K, Bandholm T, Serner A. Effects of the Nordic Hamstring exercise on sprint capacity in male football players: a randomized controlled trial. J Sports Sci. 2018;36(14):1663–1672. doi:10.1080/02640414.2017.1409609

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Krommes K, Petersen J, Nielsen MB, Aagaard P, Holmich P, Thorborg K. Sprint and jump performance in elite male soccer players following a 10-week Nordic Hamstring exercise protocol: a randomised pilot study. BMC Res Notes. 2017;10(1):669. doi:10.1186/s13104-017-2986-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Askling C, Karlsson J, Thorstensson A. Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Scand J Med Sci Sports. 2003;13(4):244–250. PubMed ID: 12859607 doi:10.1034/j.1600-0838.2003.00312.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Mendiguchia J, Samozino P, Martinez-Ruiz E, et al. Progression of mechanical properties during on-field sprint running after returning to sports from a hamstring muscle injury in soccer players. Int J Sports Med. 2014;35(8):690–695. PubMed ID: 24424959 doi:10.1055/s-0033-1363192

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Knee flexor strength and bicep femoris electromyographical activity is lower in previously strained hamstrings. J Electromyogr Kinesiol. 2013;23(3):696–703. PubMed ID: 23290179 doi:10.1016/j.jelekin.2012.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Moir GL, Brimmer SM, Snyder BW, Connaboy C, Lamont HS. Mechanical limitations to sprinting and biomechanical solutions: a constraints-led framework for the incorporation of resistance training to develop sprinting speed. Strength Cond J. 2018;40(1):47–67. doi:10.1519/SSC.0000000000000358

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016;116(6):1091–1116. PubMed ID: 26941023 doi:10.1007/s00421-016-3346-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89(5):1991–1999. doi:10.1152/jappl.2000.89.5.1991

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Tillin NA, Pain MT, Folland J. Explosive force production during isometric squats correlates with athletic performance in rugby union players. J Sports Sci. 2013;31(1):66–76. PubMed ID: 22938509 doi:10.1080/02640414.2012.720704

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology. 2007;18(6):805–835. PubMed ID: 18049195 doi:10.1097/EDE.0b013e3181577511

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Haugen T, Buchheit M. Sprint running performance monitoring: methodological and practical considerations. Sports Med. 2016;46(5):641–656. PubMed ID: 26660758 doi:10.1007/s40279-015-0446-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Romero-Franco N, Jimenez-Reyes P, Castano-Zambudio A, et al. Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci. 2017;17(4):386–392. PubMed ID: 27806673 doi:10.1080/17461391.2016.1249031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648–658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Clark KP, Rieger RH, Bruno RF, Stearne DJ. The NFL Combine 40-yard dash: how important is maximum velocity? [published online ahead of print June 22, 2017] J Strength Cond Res. doi:10.1519/JSC0000000000002081

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Morin JB, Samozino P. Spreadsheet for Sprint Acceleration Force-Velocity-Power Profiling. 2017. https://www.researchgate.net/publication/321767606_Spreadsheet_for_Sprint_acceleration_force-velocity-power_profiling. Accessed March 12, 2018.

    • Search Google Scholar
    • Export Citation
  • 24.

    Thorborg K, Bandholm T, Holmich P. Hip- and knee-strength assessments using a hand-held dynamometer with external belt-fixation are inter-tester reliable. Knee Surg Sports Traumatol Arthrosc. 2013;21(3):550–555. PubMed ID: 22773065 doi:10.1007/s00167-012-2115-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Mentiplay BF, Perraton LG, Bower KJ, et al. Assessment of lower limb muscle strength and power using hand-held and fixed dynamometry: a reliability and validity study. PLoS ONE. 2015;10(10):0140822. PubMed ID: 26509265 doi:10.1371/journal.pone.0140822

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):155–159. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 27.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267–272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Buchheit M, Samozino P, Glynn JA, et al. Mechanical determinants of acceleration and maximal sprinting speed in highly trained young soccer players. J Sports Sci. 2014;32(20):1906–1913. PubMed ID: 25356503 doi:10.1080/02640414.2014.965191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Morin JB, Edouard P, Samozino P. Technical ability of force application as a determinant factor of sprint performance. Med Sci Sports Exerc. 2011;43(9):1680–1688. PubMed ID: 21364480 doi:10.1249/MSS.0b013e318216ea37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Schache AG, Blanch PD, Dorn TW, Brown NA, Rosemond D, Pandy MG. Effect of running speed on lower limb joint kinetics. Med Sci Sports Exerc. 2011;43(7):1260–1271. PubMed ID: 21131859 doi:10.1249/MSS.0b013e3182084929

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Opar DA, Williams MD, Timmins RG, Dear NM, Shield AJ. Rate of torque and electromyographic development during anticipated eccentric contraction is lower in previously strained hamstrings. Am J Sports Med. 2013;41(1):116–125. PubMed ID: 23108640 doi:10.1177/0363546512462809

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rumpf MC, Lockie RG, Cronin JB, Jalilvand F. Effect of different sprint training methods on sprint performance over various distances: a brief review. J Strength Cond Res. 2016;30(6):1767–1785. PubMed ID: 26492101 doi:10.1519/JSC.0000000000001245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gabbett TJ, Whiteley R. Two training-load paradoxes: can we work harder and smarter, can physical preparation and medical be teammates? Int J Sports Physiol Perform. 2017;12(Suppl 2):S250–254. doi:10.1123/ijspp.2016-0321

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 482 482 90
Full Text Views 29 29 1
PDF Downloads 22 22 1