Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $112.00

1 year online subscription

USD  $149.00

Student 2 year online subscription

USD  $213.00

2 year online subscription

USD  $284.00

Purpose: The hyperbolic distance–time relationship can be used to profile running performance and establish critical speed (CS) and D′ (the curvature constant of the speed–time relationship). Typically, to establish these parameters, multiple (3+) performance trials are required, which can be highly fatiguing and limit the usability of such protocols in a single training session. This study aimed to compare CS and D′ calculated from a 2-trial (2-point model) and a 3-trial (3-point model) method. Methods: A total of 14 male distance runners completed 3 fixed-distance (3600, 2400, and 1200 m) time trials on a 400-m outdoor running track, separated by 30-min recoveries. Participants completed the protocol 9 times across a 12-mo period, with approximately 42 d between tests. CS and D′ were calculated using all 3 distances (3-point model) and also using the 3600- and 1200-m distances only (2-point model). Results: Mean (SD) CS for both 3-point and 2-point models was 4.94 (0.32) m·s−1, whereas the values for D′ were 123.3 (57.70) and 127.4 (57.34) m for the 3-point and 2-point models, respectively. Overall bias for both CS and D′ between 3-point and 2-point model was classed as trivial. Conclusion: A 2-point time-trial model can be used to calculate CS and D′ as proficiently as a 3-point model, making it a less fatiguing, inexpensive, and applicable method for coaches, practitioners, and athletes for monitoring running performance in 1 training session.

Kordi is with British Cycling, National Cycling Centre, Manchester, United Kingdom, and the Dept of Sport, Exercise, and Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom. Menzies is with the Dept for Health, University of Bath, Bath, United Kingdom. Galbraith is with the School of Health, Sport, and Bioscience, University of East London, Stratford, United Kingdom.

Kordi (mehdikordi@hotmail.co.uk) is corresponding author.
  • 1.

    Hill DW. The critical power concept. A review. Sports Med Auckl NZ. 1993;16(4):237254. PubMed ID: 8248682 doi:10.2165/00007256-199316040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Monod H, Scherrer J. [Capacity for static work in a synergistic muscular group in man]. C R Seances Soc Biol Fil. 1957;151(7):13581362. PubMed ID: 13523906

    • Search Google Scholar
    • Export Citation
  • 3.

    Housh TJ, Devries HA, Housh DJ, Tichy MW, Smyth KD, Tichy AM. The relationship between critical power and the onset of blood lactate accumulation. J Sports Med Phys Fitness. 1991;31(1):3136. PubMed ID: 1861480

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Jenkins DG, Quigley BM. Blood lactate in trained cyclists during cycle ergometry at critical power. Eur J Appl Physiol. 1990;61(3–4):278283. PubMed ID: 2282914 doi:10.1007/BF00357613

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Hughson RL, Orok CJ, Staudt LE. A high velocity treadmill running test to assess endurance running potential. Int J Sports Med. 1984;5(1):2325. PubMed ID: 6698679 doi:10.1055/s-2008-1025875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of VO2max and exercise tolerance. Med Sci Sports Exerc. 2010;42(10):18761890. PubMed ID: 20195180 doi:10.1249/MSS.0b013e3181d9cf7f

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bull AJ, Housh TJ, Johnson GO, Rana SR. Physiological responses at five estimates of critical velocity. Eur J Appl Physiol. 2008;102(6):711720. PubMed ID: 18092175 doi:10.1007/s00421-007-0649-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Galbraith A, Hopker J, Lelliott S, Diddams L, Passfield L. A single-visit field test of critical speed. Int J Sports Physiol Perform. 2014;9(6):931935. PubMed ID: 24622815 doi:10.1123/ijspp.2013-0507

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Simpson LP, Kordi M. Comparison of critical power and W′ derived from 2 or 3 maximal tests. Int J Sports Physiol Perform. 2017;12(6):825830. PubMed ID: 27918663 doi:10.1123/ijspp.2016-0371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Aubry RL, Power GA, Burr JF. An assessment of running power as a training metric for elite and recreational runners. J Strength Cond Res. 2018;32(8):22582264. PubMed ID: 29912073 doi:10.1519/JSC.0000000000002650

    • Search Google Scholar
    • Export Citation
  • 11.

    Galbraith A, Hopker J, Cardinale M, Cunniffe B, Passfield L. A 1-year study of endurance runners: training, laboratory tests, and field tests. Int J Sports Physiol Perform. 2014;9(6):10191025. PubMed ID: 24664950 doi:10.1123/ijspp.2013-0508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Hopkins WG. Spreadsheets for analysis of validity and reliability. Sportscience. 2015;19:3642.

  • 13.

    Vanhatalo A, Doust JH, Burnley M. A 3-min all-out cycling test is sensitive to a change in critical power. Med Sci Sports Exerc. 2008;40(9):16931699. PubMed ID: 18685519 doi:10.1249/MSS.0b013e318177871a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Pettitt RW, Jamnick N, Clark IE. 3-min all-out exercise test for running. Int J Sports Med. 2012;33(6):426431. PubMed ID: 22422309 doi:10.1055/s-0031-1299749

  • 15.

    Triska C, Karsten B, Heidegger B, et al. Reliability of the parameters of the power-duration relationship using maximal effort time-trials under laboratory conditions. PLoS ONE. 2017;12(12):0189776. PubMed ID: 29244861 doi:10.1371/journal.pone.0189776

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Karsten B, Baker J, Naclerio F, Klose A, Bianco A, Nimmerichter A. Time trials versus time-to-exhaustion tests: effects on critical power, W′, and oxygen-uptake kinetics. Int J Sports Physiol Perform. 2018;13(2):183188. PubMed ID: 28530476 doi:10.1123/ijspp.2016-0761

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Karsten B, Hopker J, Jobson SA, et al. Comparison of inter-trial recovery times for the determination of critical power and W′ in cycling. J Sports Sci. 2017;35(14):14201425. PubMed ID: 27531664 doi:10.1080/02640414.2016.1215500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Dekerle J, de Souza KM, de Lucas RD, Guglielmo LGA, Greco CC, Denadai BS. Exercise tolerance can be enhanced through a change in work rate within the severe intensity domain: work above critical power is not constant. PLoS ONE. 2015;10(9):e0138428. PubMed ID: 26407169 doi:10.1371/journal.pone.0138428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Galbraith A, Hopker J. A novel field test to determine critical speed. J Sports Med Doping Stud. 2011;1(1):14. https://www.omicsonline.org/a-novel-field-test-to-determine-critical-speed-2161-0673.1000101.php?aid=2482. Accessed June 21, 2018.

    • Search Google Scholar
    • Export Citation
  • 20.

    Triska C, Karsten B, Nimmerichter A, Tschan H. Iso-duration determination of D′ and CS under laboratory and field conditions. Int J Sports Med. 2017;38(7):527533. PubMed ID: 28514809 doi:10.1055/s-0043-102943

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 329 223 29
Full Text Views 28 11 0
PDF Downloads 18 9 0