Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $107.00

1 year subscription

USD  $142.00

Student 2 year subscription

USD  $203.00

2 year subscription

USD  $265.00

The assessment of horizontal force during overground sprinting is increasingly prevalent in practice and research, stemming from advances in technology and access to simplified yet valid field methods. As researchers search out optimal means of targeting the development of horizontal force, there is considerable interest in the effectiveness of external resistance. Increasing attention in research provides more information surrounding the biomechanics of sprinting in general and insight into the potential methods of developing determinant capacities. However, there is a general lack of consensus on the assessment and computation of horizontal force under resistance, which has resulted in a confusing narrative surrounding the practical applicability of loading parameters for performance enhancement. As such, the aim of this commentary was twofold: to provide a clear narrative of the assessment and computation of horizontal force in resisted sprinting and to clarify and discuss the impact of methodological approaches to subsequent training implementation. Horizontal force computation during resisted sleds, a common sprint-training apparatus in the field, is used as a test case to illustrate the risks associated with substandard methodological practices and improperly accounting for the effects of friction. A practical and operational synthesis is provided to help guide researchers and practitioners in selecting appropriate resistance methods. Finally, an outline of future challenges is presented to aid the development of these approaches.

Cross and Samozino are with the Interuniversity Laboratory of Biology of Motricity, Savoie Mont Blanc University, Chambéry, France. Cross is with the Scientific and Sports Dept, Fédération Française de Ski, Annecy, France. Cross, Tinwala, Lenetsky, Brown, Brughelli, and Morin are with the Sports Performance Research Inst New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. Brown is with Neuromuscular and Rehabilitation Robotics Laboratory (NeuRRo Lab), Dept of Physical Medicine and Rehabilitation, University of Michigan Medical School, Ann Arbor, MI. Morin is with the Côte d’Azur University, LAMHESS, Nice, France.

Cross (matthew.cross@univ-savoie.net) is corresponding author.
  • 1.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 1—biological basis of maximal power production. Sports Med. 2011;41(1):1738. PubMed ID: 21142282 doi:10.2165/11537690-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2—training considerations for improving maximal power production. Sports Med. 2011;41(2):125146. PubMed ID: 21244105 doi:10.2165/11538500-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cross MR, Brughelli M, Samozino P, Morin JB. Methods of power-force-velocity profiling during sprint running: a narrative review. Sports Med. 2017;47(7):12551269. PubMed ID: 27896682 doi:10.1007/s40279-016-0653-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Mendiguchia J, Edouard P, Samozino P, et al. Field monitoring of sprinting power-force-velocity profile before, during and after hamstring injury: two case reports. J Sports Sci. 2016;34(6):535541. PubMed ID: 26648237 doi:10.1080/02640414.2015.1122207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Cross MR, Samozino P, Brown SR, Morin JB. A comparison between the force–velocity relationships of unloaded and sled-resisted sprinting: single vs. multiple trial methods. Eur J Appl Physiol. 2018;118(3):563571. PubMed ID: 29302753 doi:10.1007/s00421-017-3796-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Samozino P, Rabita G, Dorel S, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports. 2016;26(6):648658. PubMed ID: 25996964 doi:10.1111/sms.12490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of sprint performance with ground reaction forces during acceleration and maximal speed phases in a single sprint. J Appl Biomech. 2018;34(2):104110. PubMed ID: 28952906 doi:10.1123/jab.2016-0356

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Tomazin K, Morin JB, Strojnik V, Podpecan A, Millet GY. Fatigue after short (100-m), medium (200-m) and long (400-m) treadmill sprints. Eur J Appl Physiol. 2012;112(3):10271036. PubMed ID: 21735216 doi:10.1007/s00421-011-2058-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Martinez-Valencia MA, Romero-Arenas S, Elvira JL, Gonzalez-Rave JM, Navarro-Valdivielso F, Alcaraz PE. Effects of sled towing on peak force, the rate of force development and sprint performance during the acceleration phase. J Hum Kinet. 2015;46(1):139148. doi:10.1515/hukin-2015-0042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Nagahara R, Botter A, Rejc E, et al. Concurrent validity of gps for deriving mechanical properties of sprint acceleration. Int J Sports Physiol Perform. 2017;12(1):129132. PubMed ID: 27002693 doi:10.1123/ijspp.2015-0566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Romero-Franco N, Jimenez-Reyes P, Castano-Zambudio A, et al. Sprint performance and mechanical outputs computed with an iPhone app: comparison with existing reference methods. Eur J Sport Sci. 2017;17(4):386392. PubMed ID: 27806673 doi:10.1080/17461391.2016.1249031

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Jaskólski A, Veenstra B, Goossens P, Jaskólska A, Skinner JS. Optimal resistance for maximal power during treadmill running. Sports Med Train Rehabil. 1996;7(1):1730. doi:10.1080/15438629609512067

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Kawamori N, Nosaka K, Newton RU. Relationships between ground reaction impulse and sprint acceleration performance in team sport athletes. J Strength Cond Res. 2013;27(3):568573. PubMed ID: 22531618 doi:10.1519/JSC.0b013e318257805a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cross MR, Lahti J, Brown SR, et al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS ONE. 2018;13(4):0195477. PubMed ID: 29641589 doi:10.1371/journal.pone.0195477

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Blau PJ. Friction Science and Technology: From Concepts to Applications. 2nd ed. Boca Raton, FL: CRC press; 2008.

  • 16.

    Linthorne NP, Cooper JE. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise. Sports Biomech. 2013;12(2):175185. PubMed ID: 23898689 doi:10.1080/14763141.2012.726638

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Cross MR, Tinwala F, Lenetsky S, Samozino P, Brughelli M, Morin JB. Determining friction and effective loading for sled sprinting. J Sports Sci. 2017;35(22):21982203. PubMed ID: 27905864 doi:10.1080/02640414.2016.1261178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381400. PubMed ID: 26553497 doi:10.1007/s40279-015-0422-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Alcaraz PE, Carlos-Vivas J, Oponjuru BO, Martinez-Rodriguez A. The effectiveness of resisted sled training (RST) for sprint performance: a systematic review and meta-analysis. Sports Med. 2018;48(9):21432165. PubMed ID: 29926369 doi:10.1007/s40279-018-0947-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Monte A, Nardello F, Zamparo P. Sled towing: the optimal overload for peak power production. Int J Sports Physiol Perform. 2017;12(8):10521058. PubMed ID: 27967284 doi:10.1123/ijspp.2016-0602

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Andre MJ, Fry AC, Bradford LA, Buhr KW. Determination of friction and pulling forces during a weighted sled pull. J Strength Cond Res. 2013;27(5):11751178. PubMed ID: 22964856 doi:10.1519/JSC.0b013e318269aaef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Cross MR, Brughelli M, Samozino P, Brown SR, Morin JB. Optimal loading for maximizing power during sled-resisted sprinting. Int J Sports Physiol Perform. 2017;12(8):10691077. PubMed ID: 28051333 doi:10.1123/ijspp.2016-0362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Morin JB, Samozino P. Interpreting power-force-velocity profiles for individualized and specific training. Int J Sports Physiol Perform. 2016;11(2):267272. PubMed ID: 26694658 doi:10.1123/ijspp.2015-0638

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 508 472 35
Full Text Views 30 29 1
PDF Downloads 19 18 2