Circulating, Cell-Free DNA for Monitoring Player Load in Professional Football

Click name to view affiliation

Nils Haller
Search for other papers by Nils Haller in
Current site
Google Scholar
PubMed
Close
,
Tobias Ehlert
Search for other papers by Tobias Ehlert in
Current site
Google Scholar
PubMed
Close
,
Sebastian Schmidt
Search for other papers by Sebastian Schmidt in
Current site
Google Scholar
PubMed
Close
,
David Ochmann
Search for other papers by David Ochmann in
Current site
Google Scholar
PubMed
Close
,
Björn Sterzing
Search for other papers by Björn Sterzing in
Current site
Google Scholar
PubMed
Close
,
Franz Grus
Search for other papers by Franz Grus in
Current site
Google Scholar
PubMed
Close
, and
Perikles Simon
Search for other papers by Perikles Simon in
Current site
Google Scholar
PubMed
Close
Restricted access

Purpose: Player monitoring in elite sport settings is becoming increasingly important. Questionnaire-based methods and biomarkers such as circulating, cell-free DNA (cfDNA) are suggested for load monitoring. cfDNA concentrations were shown to increase depending on total distance covered in football and were associated with overtraining in weight lifters. Thus, the objective of this study was to examine whether cfDNA is feasible as a monitoring tool in elite football players. Methods: Capillary blood samples from 22 male elite football players were collected over 4 mo of a regular season. Sampling was conducted the day before, 1 day after, or several days after regular-season games and/or training. In addition, each player filled in a visual analogue scale (VAS) questionnaire including the items “general perceived exertion,” “muscular fatigue,” and “mental fatigue.” Performance during training and games was tracked by the Catapult system and with the OPTA system, respectively. Results: cfDNA values were significantly elevated in players the day after regular-season games (1.4-fold; P = .0004) in line with the scores of the VAS. Both parameters showed significantly higher values during midweek-game weeks. cfDNA concentrations correlated with training data, and VAS was correlated with the tracking of the season games. However, cfDNA and VAS did not correlate with each other. Conclusions: cfDNA concentrations at rest and VAS scores are influenced by previous load in professional football players. Future studies will reveal whether cfDNA might serve as a practically applicable marker for player load in football players.

Haller, Ehlert, Schmidt, Ochmann, Sterzing, and Simon are with the Dept of Sports Medicine, Rehabilitation and Prevention, Johannes Gutenberg-University Mainz, Mainz, Germany. Grus is with the Dept of Ophthalmology, University Medical Center Mainz, Mainz, Germany.

Simon (simonpe@uni-mainz.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clin J Sport Med. 2008;18(5):423431. PubMed ID: 18806550 doi:10.1097/JSM.0b013e3181818e0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue. J Sports Sci. 2003;21(7):519528. PubMed ID: 12848386 doi:10.1080/0264041031000071182

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ekstrand J, Walden M, Hagglund M. A congested football calendar and the wellbeing of players: correlation between match exposure of European footballers before the World Cup 2002 and their injuries and performances during that World Cup. Br J Sports Med. 2004;38(4):493497. PubMed ID: 15273193 doi:10.1136/bjsm.2003.009134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Halson SL. Monitoring training load to understand fatigue in athletes. Sports Med. 2014;44(suppl 2):139147. doi:10.1007/s40279-014-0253-z

  • 5.

    Bengtsson H, Ekstrand J, Hagglund M. Muscle injury rates in professional football increase with fixture congestion: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):743747. PubMed ID: 23851296 doi:10.1136/bjsports-2013-092383

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Nedelec M, McCall A, Carling C, Legall F, Berthoin S, Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Med. 2012;42(12):9971015. PubMed ID: 23046224

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Marqués-Jiménez D, Calleja-González J, Arratibel I, Delextrat A, Terrados N. Fatigue and recovery in soccer: evidence and challenges. Open Sports Sci J. 2017;10(suppl 1: M5):5270. doi:10.2174/1875399X01710010052

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Thorpe R, Sunderland C. Muscle damage, endocrine, and immune marker response to a soccer match. J Strength Cond Res. 2012;26(10):27832790. PubMed ID: 22124357 doi:10.1519/JSC.0b013e318241e174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Breitbach S, Tug S, Simon P. Circulating cell-free DNA: an up-coming molecular marker in exercise physiology. Sports Med. 2012;42(7):565586. PubMed ID: 22694348 doi:10.2165/11631380-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581(5):795799. PubMed ID: 17289032 doi:10.1016/j.febslet.2007.01.051

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Beiter T, Fragasso A, Hartl D, Niess AM. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med. 2015;45(5):625640. doi:10.1007/s40279-014-0296-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Lam WKJ, Gai WX, Sun K, et al. DNA of erythroid origin is present in human plasma and informs the types of anemia. Clin Chem. 2017;63(10):16141623. PubMed ID: 28784691 doi:10.1373/clinchem.2017.272401

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Haller N, Helmig S, Taenny P, Petry J, Schmidt S, Simon P. Circulating, cell-free DNA as a marker for exercise load in intermittent sports. PLoS ONE. 2018;13(1):0191915. PubMed ID: 29370268 doi:10.1371/journal.pone.0191915

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Fatouros IG, Destouni A, Margonis K, et al. Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clin Chem. 2006;52(9):18201824. PubMed ID: 16840584 doi:10.1373/clinchem.2006.070417

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Mohr M, Draganidis D, Chatzinikolaou A, et al. Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol. 2016;116(1):179193. PubMed ID: 26377004 doi:10.1007/s00421-015-3245-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Breitbach S, Tug S, Helmig S, et al. Direct quantification of cell-free, circulating DNA from unpurified plasma. PLoS ONE. 2014;9(3):e87838. PubMed ID: 24595313 doi:10.1371/journal.pone.0087838

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Impellizzeri FM, Rampinini E, Coutts AJ, Sassi A, Marcora SM. Use of RPE-based training load in soccer. Med Sci Sports Exerc. 2004;36(6):10421047. PubMed ID: 15179175 doi:10.1249/01.MSS.0000128199.23901.2F

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Haller N, Tug S, Breitbach S, Jorgensen A, Simon P. Increases in circulating, cell-free DNA during aerobic running depend on intensity and duration. Int J Sports Physiol Perform. 2017;12(4):455462. doi:10.1123/ijspp.2015-0540

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Crichton N. Visual Analogue Scale (VAS). J Clin Nurs. 2001;10(5):706706.

  • 20.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):109115. PubMed ID: 11708692

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring training loads: the past, the present, and the future. Int J Sports Physiol Perform. 2017;12(suppl 2):S2228. PubMed ID: 28253038 doi:10.1123/IJSPP.2016-0388

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Bourdon PC, Cardinale M, Murray A, et al. Monitoring athlete training loads: consensus statement. Int J Sports Physiol Perform. 2017;12(suppl 2):S2161S2170. PubMed ID: 28463642 doi:10.1123/IJSPP.2017-0208

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Brink MS, Visscher C, Coutts AJ, Lemmink KA. Changes in perceived stress and recovery in overreached young elite soccer players. Scand J Med Sci Sports. 2012;22(2):285292. PubMed ID: 21039901 doi:10.1111/j.1600-0838.2010.01237.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Breitbach S, Sterzing B, Magallanes C, Tug S, Simon P. Direct measurement of cell-free DNA from serially collected capillary plasma during incremental exercise. J Appl Physiol. 2014;117(2):119130. PubMed ID: 24876361 doi:10.1152/japplphysiol.00002.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Margeli A, Skenderi K, Tsironi M, et al. Dramatic elevations of interleukin-6 and acute-phase reactants in athletes participating in the ultradistance foot race spartathlon: severe systemic inflammation and lipid and lipoprotein changes in protracted exercise. J Clin Endocr Metab. 2005;90(7):39143918. PubMed ID: 15855262 doi:10.1210/jc.2004-2346

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Fatouros IG, Jamurtas AZ, Nikolaidis MG, et al. Time of sampling is crucial for measurement of cell-free plasma DNA following acute aseptic inflammation induced by exercise. Clin Biochem. 2010;43(16–17):13681370. doi:10.1016/j.clinbiochem.2010.08.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Gentles JA, Hornsby WG, Coniglio CL, et al. Cell free DNA as a marker of training status in weightlifters. Biol Sport. 2017;34(3):287294. doi:10.5114/biolsport.2017.67855

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Dupont G, Nedelec M, McCall A, McCormack D, Berthoin S, Wisloff U. Effect of 2 soccer matches in a week on physical performance and injury rate. Am J Sports Med. 2010;38(9):17521758. PubMed ID: 20400751 doi:10.1177/0363546510361236

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Atamaniuk J, Stuhlmeier KM, Vidotto C, Tschan H, Dossenbach-Glaninger A, Mueller MM. Effects of ultra-marathon on circulating DNA and mRNA expression of pro- and anti-apoptotic genes in mononuclear cells. Eur J Appl Physiol. 2008;104(4):711717. PubMed ID: 18651163 doi:10.1007/s00421-008-0827-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Randers MB, Mujika I, Hewitt A, et al. Application of four different football match analysis systems: a comparative study. J Sports Sci. 2010;28(2):171182. PubMed ID: 20391091 doi:10.1080/02640410903428525

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Saw AE, Main LC, Gastin PB. Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br J Sports Med. 2016;50(5):281291. PubMed ID: 26423706 doi:10.1136/bjsports-2015-094758

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Frank MO. Circulating cell-free DNA differentiates severity of inflammation. Biol Res Nurs. 2016;18(5):477488. PubMed ID: 27067611 doi:10.1177/1099800416642571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Silva JR, Rebelo A, Marques F, et al. Biochemical impact of soccer: an analysis of hormonal, muscle damage, and redox markers during the season. Appl Physiol Nutr Metab. 2014;39(4):432438. PubMed ID: 24669984 doi:10.1139/apnm-2013-0180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Lehmann-Werman R, Neiman D, Zemmour H, et al. Identification of tissue-specific cell death using methylation patterns of circulating DNA. Proc Natl Acad Sci U S A. 2016;113(13):E1826E1834. PubMed ID: 26976580 doi:10.1073/pnas.1519286113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gai W, Ji L, Lam WKJ, et al. Liver- and colon-specific DNA methylation markers in plasma for investigation of colorectal cancers with or without liver metastases. Clin Chem. 2018;64(8):12391249. PubMed ID: 29903871 doi:10.1373/clinchem.2018.290304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    de Sousa MV, Madsen K, Fukui R, Santos A, da Silva ME. Carbohydrate supplementation delays DNA damage in elite runners during intensive microcycle training. Eur J Appl Physiol. 2012;112(2):493500. PubMed ID: 21584681 doi:10.1007/s00421-011-2000-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Heisterberg MF, Fahrenkrug J, Krustrup P, Storskov A, Kjaer M, Andersen JL. Extensive monitoring through multiple blood samples in professional soccer players. J Strength Cond Res. 2013;27(5):12601271. PubMed ID: 22744299 doi:10.1519/JSC.0b013e3182653d17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Little T, Williams AG. Measures of exercise intensity during soccer training drills with professional soccer players. J Strength Cond Res. 2007;21(2):367371. PubMed ID: 17530957

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Velders M, Treff G, Machus K, Bosnyák E, Steinacker J, Schumann U. Exercise is a potent stimulus for enhancing circulating DNase activity. Clin Biochem J. 2014;47(6):471474.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Atamaniuk J, Vidotto C, Tschan H, Bachl N, Stuhlmeier KM, Müller MM. Increased concentrations of cell-free plasma DNA after exhaustive exercise. Clin Chem. 2004;50(9):16681670.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Coutts AJ, Rampinini E, Marcora SM, Castagna C, Impellizzeri FM. Heart rate and blood lactate correlates of perceived exertion during small-sided soccer games. J Sci Med Sport. 2009;12(1):7984. PubMed ID: 18068433 doi:10.1016/j.jsams.2007.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Alexiou H, Coutts AJ. A comparison of methods used for quantifying internal training load in women soccer players. Int J Sports Physiol Perform. 2008;3(3):320330. PubMed ID: 19211944 doi:10.1123/ijspp.3.3.320

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Brink MS, Visscher C, Arends S, Zwerver J, Post WJ, Lemmink KA. Monitoring stress and recovery: new insights for the prevention of injuries and illnesses in elite youth soccer players. Br J Sports Med. 2010;44(11):809815. PubMed ID: 20511621 doi:10.1136/bjsm.2009.069476

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3131 554 31
Full Text Views 190 52 20
PDF Downloads 117 16 3